Strabismus surgery in the management of diplopia caused by myasthenia gravis

Myasthenia gravis (MG) causes diplopia in about 90% of patients with the disease.1–3 Regardless of systemic treatments, complete remission occurs in only about 37%; and, even with prism glasses, an acceptable field of binocular single vision (BSV) is not always achieved.1–3 Minimal literature has emerged describing success with strabismus surgery in patients with diplopia caused by MG despite systemic treatments.2–4 In all cases found published to date, surgery had been performed only after the strabismus angle concerned had been stable for at least five months. We describe two patients where strabismus surgery was used to manage unstable diplopia caused by MG with longstanding success.

Case 1

A 36 year old woman presented in 1992 with fatigable right lateral rectus weakness. She later also developed fatigable dysphagia and dysphonia. Tests for MG were equivocal until 1999 when the diagnosis was supported by Tensilon testing and increased anti-acetylcholine receptor and anti-nuclear antibodies. Computed tomography (CT) of the chest was unremarkable. She later also developed fatigable diplopia but was satisfactorily controlled with systemic medical treatments. After two years of relatively stable symptoms these treatments were weaned. However, after two months, she relapsed. Furthermore, the recurrent diplopia was unstable and unresponsive to retreatment. On examination there was elevation and adduction of the left eye even in the primary position. She underwent surgery in May 1989 involving 6 mm left superior rectus recession and 5 mm right inferior rectus recession. Postoperatively there was still some left hypertropia. It was thought that this might improve with time and ongoing prednisolone but, because it did not, in July 1989 she underwent left inferior oblique recession. This resulted in complete resolution of diplopia. However, in August 1989, the patient developed generalized MG and diplopia due to involvement of previously unaffected extraocular muscles. Repeat chest CT showed an enlarged thymus which was resected with subsequent remission of all symptoms and signs. Fatigable ptosis is the only recurrent disease manifestation.

Case 2

A 59 year old woman presented in 1986 with isolated fluctuating right ptosis. Ocular MG was diagnosed with positive Tensilon testing and increased anti-acetylcholine receptor and anti-nuclear antibodies. Computed tomography (CT) of the chest was unremarkable. She later also developed fatigable diplopia but was satisfactorily controlled with systemic medical treatments. After two years of relatively stable symptoms these treatments were weaned. However, after two months, she relapsed. Furthermore, the recurrent diplopia was unstable and unresponsive to retreatment. On examination there was elevation and adduction of the left eye even in the primary position. She underwent surgery in May 1989 involving 6 mm left superior rectus recession and 5 mm right inferior rectus recession. Postoperatively there was still some left hypertropia. It was thought that this might improve with time and ongoing prednisolone but, because it did not, in July 1989 she underwent left inferior oblique recession. This resulted in complete resolution of diplopia. However, in August 1989, the patient developed generalized MG and diplopia due to involvement of previously unaffected extraocular muscles. Repeat chest CT showed an enlarged thymus which was resected with subsequent remission of all symptoms and signs. Fatigable ptosis is the only recurrent disease manifestation.

References

Orbital varices and orbital wall defects

Orbital varices are a vascular hamartoma typified by a plexus of low pressure, low flow, thin walled and distensible vessels that intermingle with the normal orbital vessels. If freely communicating with the orbital circulation, engorgement of varices can occur by increasing venous pressure through the Valsalva manoeuvre, bending posture, coughing or straining and these, in turn, lead to the clinical characteristics of variable proptosis, intermittent pain, and orbital haemorrhage. Observation is usually warranted for small lesions, but surgical intervention may be necessary in advanced cases: indications for surgical intervention include non-resolving episodes of thrombosis, severe disfiguring proptosis or displacement of the globe, and optic nerve compression. Surgery can be extremely difficult as varices are very friable and intimately intermixed with normal orbital structures; there is also a significant risk of visual loss as a result of haemorrhage or optic nerve damage, the latter being generally caused by vascular compromise. The association of orbital venous anomalies with orbital wall defects provides a further source of surgical difficulty because of the close proximity of intracranial structures and the continuity with extraorbital or intracranial venous anomalies.

Case series

The orbital database, at Moorfields Eye Hospital, was used to identify patients with a clinical diagnosis of low pressure orbital varices and their orbital imaging (computed tomography and/or magnetic resonance image) was reviewed. Images were examined for evidence of orbital expansion, osseous defects of the orbit, nose or sinuses, and anomalies of the frontal lobes. Patients who had either orbital or intracranial surgery before the date of imaging were excluded from the investigation.

The clinical diagnosis of orbital varices was identified in 310 patients, and imaging was available for 223 patients (72%). Six patients with previous orbital or intracranial surgery were excluded and nine cases (4%) had associated anomalies of the neighbouring orbital walls (table 1).

Four cases (patients 1–4) were associated with “pitting” of the orbital wall secondary to orbital varices (fig 1A). Another three cases (patients 6–8) were associated with enlarged superior orbital fisure and two cases (patients 5 and 9) with multiple orbital roof “defects” (fig 1B). Orbital varices were present up to the dural space in two cases (patients 4 and 5), and involved the frontal lobe parenchyma in one case (patient 6; fig 1C, D).

One patient (case 2) had thinning of the superonasal quadran of the orbital wall, nasal orbital wall pitting, and a low ipsilateral cribiform plate, when first seen at age 21 in 1981 (fig 1E, F). On repeat imaging 20 years later (2001), this patient was noted to have developed proptosis, a defect in the superonasal wall of the orbit, and a new mid-line nasal encephalocele (fig 1I, J).

Comment

Fine cut (3 mm) orbital CT scans easily delineate varices and diagnostic phleboliths, which occur from thrombus formation, and provide an excellent natural contrast between brain, bone, and varix. The typical findings for varices include an ill defined multiloculated mass, with some patchy contrast enhancement, in communication with the neighbouring orbital circulation; diffuse expansion of the orbital walls is well recognised in some cases, especially in childhood lesions.

Several factors may have biased the study population: many are symptomatic patients, having been referred from other ophthalmic units in consideration for surgical intervention. The apparent incidence of orbital wall defects (4%) in our series may, therefore, be a slight overestimate. In a minority of patients, orbital varices may be associated with orbital wall defects, and such defects may, eventually, lead to an encephalocele formation. Clinicians should be aware of these, apparently unreported, associations before embarking on surgical intervention for orbital varices.

N Islam, K Mireskandari, G E Rose

Moorfields Eye Hospital, London EC1V 2PD, UK

Figure 1 (A) (Patient 1) Extensive left orbital varices (white arrows) causing orbital expansion, globe displacement, and “pitting” of the orbital roof and lamina papryacea (black arrows). (B) (Patient 5) Bilateral orbital varices associated with multiple defects, rather than pitting, of the orbital walls. (C) (Patient 6) Right orbital varices, with phleboliths, extending through the orbital apex into the middle cranial fossa (white arrows) and (D) associated with intracranial bone “pitting” and “defects” (black arrows). (E) Coronal and (F) axial CT scans of patient 2 with superonasal varices (white arrows) of right orbit in 1981. (G–J) Repeat coronal and axial CT scans in 2001 show significant enlargement of the bone defect with complete loss of mineralisation, and expansion of the frontal lobe meninges into the orbital wall defect (black arrow).
In view of the rough hard external surface, wrapping materials have been tried including donor human sclera, 1 acellular dermis, 2 rectus abdominis sheet, 3 posterior auricular musculocutaneous, 4 rectus abdominis, 5 posterior auricular musculo-cutaneous, 6 and bovine pericardium. 7 In this report, we present our 5 year experience with the use bovine pericardium wrap. The wrap is presterilised using glutaraldehyde, ethanol, and propylene oxide to minimise the risk of transmission of bacterial and viral infections.

Bovine pericardium (Ocuguard) wrap for hydroxyapatite implants

Hydroxyapatite implant becomes vascularised and integrated in the orbital tissues. In view of the rough hard external surface, wrapping materials are used to enclose the hydroxyapatite implant that facilitate attachment of extraocular muscles. Various wrapping materials have been tried including donor human sclera, 1 acellular dermis, 2 rectus abdominis sheet, 3 posterior auricular musculocutaneous, 4 rectus abdominis, 5 posterior auricular musculo-cutaneous, 6 and bovine pericardium. 7 In this report, we present our 5 year experience with the use bovine pericardium wrap. The wrap is presterilised using glutaraldehyde, ethanol, and propylene oxide to minimise the risk of transmission of bacterial and viral infections.

Patients and methods

All patients undergoing primary enucleation for large choroidal melanoma with the insertion of hydroxyapatite implant wrapped in processed bovine pericardium were included in the study. Patients with less than 3 months’ postoperative follow up or radiotherapy were excluded.

Three consultant ocular oncologists performed all the surgeries. After enucleation and haemostasis, a size 18 or 20 mm hydroxyapatite implant was wrapped with bovine pericardium wrap (Ocuguard Supple, Bio-Vascular Inc, St Paul, MI, USA) (fig 1). The posterior loose ends were anchored securely on the implant with a 6-0 Dacron suture joining opposite ends of the wrap. Windows in a square or slit configuration were cut into the wrap and all four rectus muscles were attached to the anterior lip of the apertures (fig 2). The Tenon’s capsule and the conjunctiva were closed in two layers with interrupted 6-0 Vicryl sutures. An artificial eye was inserted approximately 6 weeks postoperatively and the patient was reviewed every 3–6 months.

Results

In all, 104 (62 men and 42 women) consecutive patients operated between July 1998 and July 2002 were included. The first 27 of these patients formed part of a preliminary report published previously. 8 Median age at diagnosis was 61 years (range 21–88 years). There were no intraoperative complications in any case. Median postoperative follow up was 2.35 years (range 3 months to 4.5 years).

One patient developed pyogenic granuloma and one additional patient had large subconjunctival haematoma that resolved spontaneously. Three patients (2.9%) developed postoperative wound dehiscence. In two patients, dehiscence within 6 weeks of enucleation with exposure of the implant required replacement with high density polyethylene biomaterial implant (Medpor, USA). The remaining patient’s conjunctival wound was resutured. Three additional patients needed a lateral canthal sling operation between 6–12 months after enucleation. The overall cosmetic result was excellent in

Table 1 Characteristics of nine patients with orbital wall defects in association with orbital varices

<table>
<thead>
<tr>
<th>No</th>
<th>Side</th>
<th>Age (years) at referral</th>
<th>Sex</th>
<th>Main location of orbital varix</th>
<th>Expansion of orbit</th>
<th>Absent walls</th>
<th>Ethmoid</th>
<th>Cribriform</th>
<th>Frontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left</td>
<td>6</td>
<td>M</td>
<td>Medial and extensive superomedial</td>
<td>Present</td>
<td>Small roof defect</td>
<td>Pitted bone and smaller ethmoid</td>
<td>L-low R-normal</td>
<td>Dips low at cribriform</td>
</tr>
<tr>
<td>2</td>
<td>Right</td>
<td>21</td>
<td>F</td>
<td>Extraconal-medial</td>
<td>Present</td>
<td>Tiny thin area SNQ</td>
<td>Pitted bone and smaller ethmoid</td>
<td>R-low L-mild</td>
<td>Low frontal lobe over cribriform</td>
</tr>
<tr>
<td>3</td>
<td>Left</td>
<td>62</td>
<td>M</td>
<td>Superomedial</td>
<td>Present</td>
<td>Pitted roof and small defects of veins</td>
<td>Compressed</td>
<td>Normal</td>
<td>Hint of varix but otherwise normal</td>
</tr>
<tr>
<td>4</td>
<td>Right</td>
<td>58</td>
<td>F</td>
<td>Panorbit intraconal and extraconal</td>
<td>Present</td>
<td>Post superior wall and pitted bone</td>
<td>Normal</td>
<td>Normal</td>
<td>Varices up to front and inferior and intraconal</td>
</tr>
<tr>
<td>5</td>
<td>Right</td>
<td>47</td>
<td>M</td>
<td>Panorbit intraconal and extraconal</td>
<td>Absent</td>
<td>Posterior orbital roof</td>
<td>Normal</td>
<td>Normal</td>
<td>Varices up to dural space</td>
</tr>
<tr>
<td>6</td>
<td>Right</td>
<td>14</td>
<td>F</td>
<td>Posterior intraconal, superior extraconal</td>
<td>Present</td>
<td>Enlarged SOF</td>
<td>Normal</td>
<td>Normal</td>
<td>Varices into frontal lobe</td>
</tr>
<tr>
<td>7</td>
<td>Left</td>
<td>40</td>
<td>F</td>
<td>Posterior intraconal</td>
<td>Present</td>
<td>Enlarged SOF and small lateral wall</td>
<td>Slightly smaller</td>
<td>Unknown</td>
<td>Normal</td>
</tr>
<tr>
<td>8</td>
<td>Left</td>
<td>37</td>
<td>F</td>
<td>Posterior intraconal and extraconal</td>
<td>Present</td>
<td>Very enlarged SOF, patchy SNQ defects</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>9</td>
<td>Left</td>
<td>66</td>
<td>M</td>
<td>Extranasal-superior (large)</td>
<td>Present</td>
<td>Posterior orbital roof</td>
<td>Slightly smaller</td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

SNQ = superonasal quadrant; SOF = superior orbital fissure.

Comment

101 patients (97%) and with ocular motility satisfactory to the patients.

It is important to have a wrapping material that is safe and easy to use. The harvesting of autologous materials leaves scars and increases the surgical time.

Sclera is the most commonly used wrapping material for hydroxyapatite implants associated with varying rates of wound dehiscence (7.5%–19.3%). Comparably wound dehiscence rates of 5–14% with bovine pericardium wraps have also been reported. Wound dehiscence/implant exposure rate of 2.9% in our series is much lower than other published series using bovine pericardium or human donor sclera. Low complication rate in our series could be attributed to inclusion of cases without any orbital pathology, exclusion of cases treated previously with irradiation, and the meticulous wound closure.

Concerns regarding possible association of the use of sclera with the transmission of viral and prion infections including Creutzfeldt-Jakob disease has forced the clinicians to search for alternative materials. It is believed that the risk of transmitting prion disease by human or animal derived tissue is proportional to the risk of the donor harboring them. With the use of bovine pericardium originating from countries not known to have bovine spongiform encephalitis the risk of transmission of such infections can be minimised.

Our study suggests that the use of bovine pericardium as a wrap for hydroxyapatite implants is a safe alternative to other wrapping materials and has a low rate of complications when performed in the setting of primary enucleation.

Cyclical esotropia following surgery for partially accommodative esotropia

Cyclical strabismus is a rare phenomenon characterised by recurring periods of heterotropia usually on alternate days. It was first described by Bohm in 1845 and classically follows a 48 hour cycle with 24 hours of “straight” eyes followed by 24 hours of manifest strabismus. It usually appears spontaneously and has been reported in the aftermath of cataract, retinal detachment, and intracranial surgery. In addition there are two case reports of cyclical esotropia developing following strabismus surgery for intermittent exotropia and for infantile esotropia. However, there are no previous reports of this unusual condition developing after surgery for partially accommodative esotropia. We therefore present such a case.

Case report

A 14 year old girl was referred by her optometrist with an intermittent esotropia. Both the patient and her mother had noticed that the squint was present on some days but not on others, irrespective of spectacle wear. Six years previously she had undergone a left medial rectus recession of 5 mm and a left inferior oblique recession for a partially accommodative left esotropia with inferior oblique overaction. Unfortunately there were no previous orthoptic assessments available. However, according to her parents her surgery was successful and she had been discharged from follow up. Subsequently, despite full time spectacle wear, there had been a gradual decrease in cosmesis to her present state. She had no other ocular or medical history of note. At the time of her most recent presentation her visual acuities were 6/6, N9 in both eyes and cycloplegic refraction was uncorrected. Her visual acuity was 6/5 left and 6/6 right.

Orthoptic assessment revealed a fully accommodative left esotropia with right hyperphoria. There was normal retinal correspondence with sensory and motor fusion and stereo acuity was 55’ of arc (Frisby test). She was therefore advised to wear her glasses full time. On review two months later both the patient and her mother were adamant that the squint was present every second day, with that particular day being a “squinting day”, which correlated with the last clinic appointment being on a “squinting day”. Her orthoptic findings were unchanged. She was therefore listed for surgery and underwent right medial rectus recession of 3.5 mm, left medial rectus recession of 2.5 mm, and bilateral inferior oblique recession of 5.5 mm, left medial rectus recession of 3.5 mm, left medial rectus recession. Postoperatively she had a fully accommodative left esotropia measuring 6A for near and distance with glasses, and 25A and 20A for near and distance respectively without glasses. There was constant binocular single vision with a stereo acuity of 40’ of arc (Frisby test). This has remained stable during a nine month follow up period.

References

Cyclamen

www.bjophthalmol.com
It has been generally assumed that the adult mammalian eye is devoid of retinal stem cells or progenitor cells as self renewing and multipotential cells. In a previous study, however, identification of retinal stem cells in the mammalian retina has been reported, representing a possible substrate for retinal regeneration. It has been paralleled by other studies on multipotent precursor cells in the ciliary margin of the frog retina, the role of Muller glia for neural regeneration in the postnatal chicken retina, progenitor cell proliferation and horizontal cell genesis in the mammalian retina, and differentiation of human neural stem cells into retinal cells.

The retinal progenitor or stem cells were thought to be located in the region of the ciliary body. Examining thitas monkey eyes, it was the purpose of the present histological study to look for a region in the monkey pars plicata area which could serve as nidus of retinal stem cells.

Case reports

The study included 11 normal eyes of rhesus monkeys with a mean age of 18.2 (SD 2.8) years. The eyes had been enucleated, fixed in formaline, and prepared for light microscopy. An anterior-posterior segment going through the pupil and the optic nerve was cut out of the fixed globes. The segments were dehydrated in alcohol, embedded in paraffin, sectioned for light microscopy, and stained by haematoxylin eosin or by the periodic acid Schiff (PAS) method. Using light microscopy, different regions of the peripheral retina and of the pars plicata region of the ciliary body were examined for regularity, cell size, and nucleus size. The study design complied with the National Institute of Health’s guidelines as well as the University of Iowa Institutional Guidelines for the Care and Use of Laboratory Animals, and the guidelines of ARVO.

In all eyes examined, the inner non-pigmented layer of the posterior pars plicata region of the ciliary body close to the ora serrata was multilayered. The cells were irregular in size and shape (fig 1). There was a continuous transition to the more anteriorly located region of the pars plicata in which the inner non-pigmented layer was monolayered and regularly arranged. Here, the cell shape was columnar, and the cell nuclei were located in the basal cell region (fig 2). In the pars plicata of the ciliary body, the inner non-pigmented layer was monolayered with a cuboidal cell shape and the cell nuclei located in the basal region of the cell (fig 3). In contrast to the monkey eyes, in a human globe, the inner non-pigmented layer in the posterior pars plicata region was monolayered and more regularly arranged (fig 4).

Conclusion

In rhesus monkeys close to the ora serrata in the posterior part of the pars plicata region, the inner non-pigmented pars plicata epithelium is multilayered and irregularly structured showing nuclei of varying shape and location within the cell body. This heterogeneous morphology differs from the regular anatomy of the inner non-pigmented layer of the anterior region of the pars plicata or the inner non-pigmented layer of the pars plicata. It is in contrast to anatomic textbooks generally describing the inner layer of the posterior pars plicata as monolayered and regularly structured. It may correspond with the retina of fish and amphibians in which the continuous growth of the retina throughout life is accomplished by new retinal cells which are continually added at the anterior margin of the retina, a circumferential zone of cells, also known as the ciliary marginal zone. Correspondingly, it has recently been reported that new neurons are added to the retina of the chicken via proliferation and subsequent differentiation of neurons and glia at the retinal margin in a zone which is highly reminiscent of the ciliary marginal zone of lower vertebrates. Other investigations revealed that mitotic retinal stem cells could be isolated from the ciliary margin of the adult mouse. Recently, Kubota and colleagues investigated the eyes of an avian species, the quail, a marsupial species, the opossum, and a mammal species, the mouse. They found that the ciliary marginal zone cells gradually diminished during the vertebrate evolution. It corresponds with the present study, in which the inner non-pigmented layer in the posterior part of the pars plicata region in a human globe was monolayered (fig 4) and appeared to be more regularly structured than in the monkeys eyes (fig 1–3).

Future studies may reveal whether cells originating from the irregularly structured inner non-pigmented layer of the posterior region of the pars plicata close to the ora serrata may show characteristics of retinal progenitor cells, and whether they may be suitable for harvesting and cultivation to obtain autologous retinal progenitor cells for sublveal transplantation in patients with degenerative or dystrophic diseases of the retina and retinal pigment epithelium, such as non-exudative age related macular degeneration.

Acknowledgements

Supported by grant EY-1576 from the US National Institutes of Health, in part by unrestricted grants from Research to Prevent Blindness, Inc, New York, USA. Dr S S Hayreh is a Research to Prevent Blindness Senior Scientific Investigator.
Angioid streaks in identical twins

Angioid streaks were first described in 1889 by Doyne,1 who described them in a patient with retinal haemorrhages secondary to trauma. Knapp2 first coined the term “angioid streaks” although it was Kopler, in 1917, who correctly determined that angioid streaks represented changes at the level of Bruch’s membrane. Since then, angioid streaks have been described in a diverse group of diseases including pseudoxanthoma elasticum, Paget’s disease, and the haemoglobinopathies such as sickle cell anaemia and β-thalassaemia.3 Although angioid streaks have been reported among siblings and family members in association with pseudoxanthoma elasticum, they have not previously been reported in identical twins without any associated systemic conditions.

Case report

A 66-year-old man with no significant medical history presented to the eye clinic with reduced central vision in the left eye for 6 months. On examination, best corrected visual acuities were RE 6/12 and LE 6/36. Three months later, the identical twin of the above patient was referred by his optician with a haemorrhage at the left macula. Visual acuities were 6/6 in each eye. Funduscopy revealed a small haemorrhage along the left papillomacular bundle. Fundus fluorescein angiogram showed features similar to his brother in the form of angioid streaks associated with a subretinal neovascular membrane (fig 1).

Amser grid testing of the central field showed a central scotoma in both eyes, more pronounced in the right. Funduscopy revealed bilateral, red/brown bands radiating from the optic disc suggestive of angioid streaks, and a lesion at the left macula suggestive of a subretinal neovascular membrane. Fluorescein angiography confirmed angioid streaks showing increased transmission of fluorescence overlying the streaks and peripapillary region. The macula also showed leakage of fluorescein suggestive of a subfoveal neovascular membrane (fig 1). Visual acuity deteriorated to counting fingers in the left eye over 9 months and, to date, he maintains acuity of 6/12 in the right.

Comment

On ophthalmoscopic examination, angioid streaks appear as single or multiple dark red/brown bands radiating from the optic
Dr Dharmalingam Kumudhan, Ninewells Hospital and Medical School, Dundee, UK

The development of a subretinal neovascular membrane in inherited idiopathic angioid streaks in twins was no associated systemic condition. In such as subretinal neovascularisation, secondary complications such as subretinal neovascularisation.

Idiopathic angioid streaks may promote further understanding of the condition and facilitate the detection, and possible early therapeutic intervention of, secondary complications such as subretinal neovascularisation.

D Kumudhan, E J Wallace, S T D Roxburgh

Ninewells Hospital and Medical School, Dundee, UK

Dr Dharmalingam Kumudhan, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK

mail@kumudhan.com
doi: 10.1136/bjo.2003.031997
Accepted for publication 8 September 2003

References

Late recurrence of Langerhans cell histiocytosis in the orbit

We report a rare case of Langerhans cell histiocytosis (LCH) of bone in which recurrence occurred in the orbit 16 years after the initial lesion.

Figure 1 CT scan showing the osteolytic lesion in the lateral orbital wall.

Case report

An otherwise healthy 23 year old man presented to the eye casualty department complaining of severe pain around his left lateral orbital rim for 8 days. Two weeks previously he had suffered a minor blow to the left side of his face. At the age of 7 he had had a sacroiliac eosinophilic granuloma, which was treated surgically.

On examination, there was a small, tender, bony swelling immediately lateral to his left lateral canthus. There was no associated pyrexia, cellulitis, eyelid induration, or lymphadenopathy. Examination of the globe was normal. He was prescribed oral analgesics and antibiotics. One week later, the pain and swelling had increased and there was mild mechanical restriction of abduction of the left eye. His full blood count and liver function tests were normal. Computed tomography (CT) scanning revealed an osteolytic lesion of the lateral orbital rim (fig 1) with associated soft tissue swelling. A diagnosis of probable eosinophilic granuloma, disrupted by minor trauma, was made.

He underwent an open biopsy of the lesion, which was noted to be dark and friable with extensive oozing. A frozen section showed inflammation without giant cells or infection. Betamethasone was injected into the lesion (4 mg) and into the upper (2 mg) and lower (2 mg) eyelids.

Histological examination revealed pathological Langerhans cells, CD1a and S100 positivity, and the characteristic electron microscopic appearance of Birbeck granules confirming the diagnosis of Langerhans cell histiocytosis (fig 2). Review of the pelvic biopsy 16 years previously demonstrated similar histological features with positive staining of tumour cells with anti CD1a. Magnetic resonance image (MRI) scanning of his brain, chest x ray, and bone scans did not reveal any other lesions. He did not have a bone marrow biopsy.

He was referred to the haematology department and was treated with intravenous vinblastine, 6 mg/m² bolus, weekly for 6 weeks, and oral prednisolone, 40 mg/m² per day, for 4 weeks then tapered over 2 weeks. As this represented a recurrence of the disease, systemic treatment was chosen over local excision or radiotherapy. He suffered no adverse effects from the treatment. Within 2 months, he was asymptomatic and had recovered full eye movements.

Figure 2 (A) Photomicrograph from the orbital biopsy showing a mixed population of cells together with a multinucleated cell (arrow) typical of LCH (×100). (B) Electron microscopical photograph showing Langerhans cell with several Birbeck granules (arrows) (×26 000).

A post-treatment CT scan showed no evidence of residual disease.

Comment

Langerhans cell histiocytosis encompasses three different clinical entities: (1) eosinophilic granuloma, (2) Hand-Schüller-Christian disease, and (3) Letterer-Siwe disease. They range in disease course from a benign entity with excellent prognosis in eosinophilic granuloma to the fulminant, often fatal, leukaemia-like Letterer-Siwe disease. The hallmark of LCH is the pathological Langerhans cell (PLC), which is cytolically benign and resembles the normal Langerhans cell but is not morphologically dendritic. PLCs result from monoclonal proliferation of CD1a histiocytes and co-express CD1a and S100 antigens on their surface. They also contain the characteristic Birbeck granules as seen with electron microscopy. These are striated cytoplasmic structures with a terminal or central fusiform swelling. They are believed to originate from invaginations of the cell membrane.

LCH of bone affects children more frequently than adults and occurs most commonly in the skull. Although the orbit has been implicated previously as a primary site of LCH, we could not find any cases of recurrence within an orbit in our Medline literature search. Survival of bony LCH is excellent with treatment and spontaneous remission can also occur. Recurrences after
presenting 33 years after the original man-
intravitreal corticosteroids on intraocular
tions have not revealed a negative effect of
malignant diabetic retinopathy, chronic
ative diabetic retinopathy, neovascular glau-
 diffuse diabetic macular oedema, exudative
ages included long standing macular
infiltration of granulocytes was sharply
demarcation and destruction of necrotic
daemic tissue like intrauterine resorption
malignant sclerocorneal incision dating back to the previous cataract
surgery was ruptured. Intraocular tissue such as iris, ciliary body, and retina, were
markedly destroyed with pronounced loss of cell nuclei and melanin. The blood vessels were
widely dilated, filled with erythrocytes, and showed thrombotic signs. The most striking
finding was that some areas showed massive infiltration by granulocytes, while other areas
were almost completely devoid of inflamma-
tory cells. The lesion was sharply demarcated across the posterior uvea.
In some areas, the outer layers of the sclera showed a dense concentration of inflamma-
tory cells which were sharply demarcated from areas almost without any infiltration of
inflammatory cells. Gran stain
infiltration of granulocytes were sharply
demarcated by tissue areas in which inflam-
matory cells were almost completely missing. Such a histology, normally characteristic of
demarcation and destruction of necrotic
anaemic tissue like intrauterine resorption of a dead fetus, may be explained by the
intraocular presence of high concentrations of triamcinolone acetonide. As a steroid, it
may have inhibited the immigration of granulocytes into those areas in which the
triamcinolone acetonide crystals had not been rinsed out of the eye through the
traumatically opened cataract surgery wound. Morphallaxia-like histology is not commonly
found in globes enucleated because of infectious endophthalmitis, which is normally
characterized by a marked destruction of all intraocular structures with dense infiltration
of all ocular structures by inflammatory cells. The Morphallaxia-like morphology of infectious
endophthalmitis in eyes with intravit-
real triamcinolone acetonide may be
paralleled by the clinical observation that patients with infectious endophthalmitis after an intravitreal injection of triamcin-
olone acetonide usually show almost no pain, which is uncommon for infectious
dendophthalmitis in eyes without intraocular
steroids. The lack of inflammatory cells migrated into the eye may be the histological correlate of the clinical observation.

References

1 Schmitz L, Favara BE. Nosology and pathology of Langerhans’ cell histiocytosis—histiocytic x—ad

2 Webb DKH. Histiocytic syndromes. In: Lilleyman JS, Hann W, Blanchette VS, eds. Pediatric haematology

4 Kilpatrick SE, Wenger DE, Gilchrist GS, et al. Langerhans’ cell histiocytosis—histiocytosis x: a

5 Langerhans’ cell histiocytosis (histiocytosis x)—a

6 Lieberman PH, Jones CR, Steinman RM, et al. Langerhans cell (eosinophilic) granulomatosis—a

8 Millikan CL, Buque L, Griffith BB, et al. Langerhans’ cell histiocytosis (histiocytosis x)—a

9 Webb DKH. Histiocytic syndromes. In: Lilleyman JS, Hann W, Blanchette VS, eds. Pediatric haematology

10 Lieberman PH, Jones CR, Steinman RM, et al. Langerhans cell (eosinophilic) granulomatosis—a

11 Schmitz L, Favara BE. Nosology and pathology of Langerhans’ cell histiocytosis—histiocytic x—ad

12 Webb DKH. Histiocytic syndromes. In: Lilleyman JS, Hann W, Blanchette VS, eds. Pediatric haematology

14 Kilpatrick SE, Wenger DE, Gilchrist GS, et al. Langerhans’ cell histiocytosis (histiocytosis x)—a

15 Langerhans’ cell histiocytosis (histiocytosis x)—a

16 Lieberman PH, Jones CR, Steinman RM, et al. Langerhans cell (eosinophilic) granulomatosis—a

17 Schmitz L, Favara BE. Nosology and pathology of Langerhans’ cell histiocytosis—histiocytic x—ad

18 Webb DKH. Histiocytic syndromes. In: Lilleyman JS, Hann W, Blanchette VS, eds. Pediatric haematology

20 Kilpatrick SE, Wenger DE, Gilchrist GS, et al. Langerhans’ cell histiocytosis (histiocytosis x)—a
Photodynamic therapy for corneal neovascularisation and lipid degeneration

Corneal neovascularisation, and subsequent lipid keratopathy is a potential complication of penetrating keratoplasty, corneal trauma, and corneal ulceration. Corneal neovascularisation increases the risk of corneal opacification and graft rejection. Photodynamic therapy (PDT) using systemically or topically administered photosensitisers to occlude corneal vessels has successfully produced microvascular thrombosis without causing overt damage to surrounding tissues in animal models.1,4 The efficacy of PDT is achieved through the generation of reactive oxygen species from the interaction of light, oxygen, and photosensitisers such as verteporfin,5 commonly used to treat choroidal neovascularisation. Although animal models have demonstrated treatment parameters for corneal PDT,4 there have been no human studies to date. We present a case of lipid keratopathy secondary to corneal neovascularisation that was successfully treated with corneal PDT.

Case report

Our patient is a 36 year old white man who underwent penetrating keratoplasty in 1999 secondary to keratogenous complications by acute hydrops. He presented in May 2003 with decreased vision due to lipid keratopathy secondary to corneal neovascularisation. The affected area was approximately 2.7 mm x 2.7 mm at the inferonasal margin of the corneal graft (fig 1). Best corrected visual acuity (BCVA) in the affected eye was 20/200. After reviewing treatment options at length with the patient, the decision was made to pursue PDT in an attempt to occlude the corneal vessels. Lipid formulated verteporfin was administered intravenously at a dose of 3.64 mg/m2 of body surface area. Ten minutes after the infusion, light was delivered using a 689 nm non-thermal laser light for 300 seconds over a 3 mm x 3 mm spot size. A total light dose of 4.5 J/cm2 was given. At the 2 week follow up, the corneal opacity was significantly reduced in size, and significant regression of corneal neovascularisation was noted (fig 2A); BCVA was 20/50. At 6 weeks after treatment continued regression was realised (fig 2B) and BCVA was 20/30.

Comment

While the cost of photosensitisers may be limiting,6 PDT offers a minimally invasive alternative treatment of corneal neovascularisation. Rapid elimination of photosensitisers from the body with minimal local and systemic side effects7 make PDT an attractive alternative to repeat corneal grafting. The most common adverse reactions associated with verteporfin include visual disturbances, injection site reactions, and photosensitivity reactions.8 Because there is little or no damage to the surrounding tissues, PDT is a viable option for patients with decreased vision due to lipid keratopathy secondary to corneal neovascularisation.9 Additionally, because of the safety of PDT, multiple treatment sessions for recurrent or resistant neovascularisation are possible.

References

Retinal racemose haemangioma directly communicating with an intramuscular facial cavernous haemangioma

The triad of concomitant retinal or orbital arteriovenous malformations (AVM), intracranial AVM, and vascular facial naevi were described in the 1940s and comprise a rare phacomatoses known as Wyburn-Mason syndrome. We present a variant of this syndrome with an association not, to our knowledge, previously reported in the literature, and discuss radiological findings, management, and therapeutic options.

Case report

An asymptomatic 14 year old girl was referred following a routine optometry visit. She had been a patient at Great Ormond Street Hospital, London, with a large left cavernous facial haemangioma and had undergone several sclerotherapy injections in the past. Neurologically, there was no history of epilepsy, or evidence of midbrain or cerebellar dysfunction. Ophthalmic examination revealed visual acuities of 6/5 bilaterally with normal intraocular pressures. Colour vision was normal on Ishihara pseudo-isochromatic plates and there were no deficits detected by a Humphrey field analyser 24-2 threshold test. Fundus examination showed markedly convoluted and enlarged retinal vessels in the left eye and a normal fundus picture on the right (fig 1).

Magnetic resonance imaging (MRI) studies were performed, comprising gadolinium enhanced T1 weighted spin echo coronals with STIR sequences, T2 weighted spin axial

Figure 1 Fundus photograph of left posterior pole.
and FLAIR sagittals, as well as magnetic resonance angiography (MRA). This showed a 3×4.5×6.5 cm angiomatous mass within the left sternocleidomastoid, with associated hemi-hypertrophy of the left facial tissues and hemi-mandible (fig 2). The tumour was isointense to muscle on T1 weighted images. It extended subcutaneously along the left temporalis muscle to the left temple and extends caudally to the lower border of the body of the mandible. Furthermore, the absence of signal void suggests that this is a predominantly slow flow lesion. It is particularly well seen on STIR sequences, which define its full extent, and it is notable that there is a deeper component extending into the pterygopalatine fossa, through the infraorbital fissure, providing the likely source of abnormal tissue seen in the left orbital apex and the origin of the left retinal racemose haemangioma. There was no intracranial midbrain extension or communication with cerebral vessels.

Comment
Wyburn-Mason syndrome is a vascular condition synonymous with Bonnet de Chaume Blanc syndrome and is characterised by the coexistence of facial, retinal, orbital, and central nervous system (CNS) arteriovenous malformations. Theron et al. reviewed 80 cases of retinal AV anastomoses and found that 30% of patients had concomitant AV malformations in the CNS, a rate much lower than the 81% association reported by Wyburn-Mason. Bech and Jensen also believe that the frequency of coexisting racemose haemangiomata of the retina and brain was over-reported in the Wyburn-Mason series, suggesting that the preponderance of patients with advanced retinal lesions in the original study made associated CNS lesions more common. Isolated intramuscular haemangiomas are rare congenital benign hamartomas, which comprise less than 1% of all haemangiomas in the body. Of those that do originate in muscle, only 15% originate in the head and neck region.

The absence of intracranial involvement in the presence of the other two characteristic features of this condition constitutes a rare clinical entity. Furthermore, the direct communication between the retinal racemose and intramuscular facial cavernous haemangiomas in our case, has, to our knowledge been previously reported, and must be inordinately rare. This association may be consequential in our choice of therapeutic options for our patient.

Morbidity or early mortality in some Wyburn-Mason cases are secondary to the tendency of intracranial AV communications to bleed, leading to subarachnoid haemorrhage, neurological deficits and, in some cases, death. Ophthalmic malformations may include visual loss secondary to intraretinal and macular haemorrhage, vasculitis, neovascular glaucoma or vitreous haemorrhage. However, in most cases of abnormal retinal macrovessels, fluorescein angiography demonstrates stable non-leaking lesions. Management of patients with abnormal retinal macrovessels or "racemose" haemangiomas is difficult because of the heterogeneous modes of presentation. This may range from completely asymptomatic patients to those presenting with profound visual loss or neurological deficits. In the authors' opinion, as a result of the high association with intracranial AV malformations (30-81%), imaging studies (MRI) should be carried out on all patients with retinal arteriovenous malformations. Fluorescein angiography may be carried out to demonstrate direct AV communication and to observe stability of the retinal vessels, but needs to be weighed against the risks of the procedure.

Because of the stability of most isolated retinal lesions, treatment from an ophthalmologist beyond routine periodic examination is probably unnecessary. However, failure to recognise specific neurological signs and symptoms and to make the appropriate referrals for radiological and neurological assessment, respectively, in cases of CNS involvement, may be a significant medicolegal pitfall. The important clinical correlates of Wyburn-Mason syndrome are shown in table 1. We would emphasise the need for an integrative approach, one that doesn’t consider retinal pathology in isolation, but that carries an awareness of the neurological and cutaneous manifestations of this condition.

In this particular case, owing to the direct communication of the retinal and facial vascular lesions, our options for treatment of the facial haemangioma may be limited by the risk of retinal vascular haemorrhage, occlusion, or thrombosis. The usual interventions which include injection sclerotherapy (she has had multiple treatments), embolisation of feeder vessels, laser photocoagulation, or proton beam irradiation may have implications for visual dysfunction. Direct surgical intervention may lead to massive and uncontrollable bleeding. In our asymptomatic young patient we have adopted a periodic review policy. But as adolescence and the social and cosmetic stigmata of a facial deformity make increasing assertions on our patient, we would welcome suggestions for definitive procedures that may be appropriate in the treatment of her condition.

D Goh
Western Eye Hospital, London, UK

N N Malik
Mayday Hospital, Croydon, UK

A Gilvarry
Royal Surrey County Hospital, Guildford, UK

Correspondence to: D Goh, Western Eye Hospital, London, UK; davidgoh1@aol.com

Table 1 Clinical correlates in Wyburn–Mason syndrome

<table>
<thead>
<tr>
<th>Aetiology</th>
<th>Not regarded as hereditary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>Adolescence to early adulthood; usually becomes symptomatic before age 30 years</td>
</tr>
<tr>
<td>Skin</td>
<td>Vascular facial naevi in up to 50% of patients, usually ipsilateral to affected eye</td>
</tr>
<tr>
<td>CNS</td>
<td>AV communication of the midbrain may cause cerebral or subarachnoid haemorrhage</td>
</tr>
<tr>
<td>Signs of midbrain lesion, hemiplegia, or hemiparesis, cerebellar dysfunction, Parinaud’s syndrome</td>
<td></td>
</tr>
<tr>
<td>Mental changes affecting intelligence and memory</td>
<td></td>
</tr>
<tr>
<td>Systemic</td>
<td>Seizures in only 5% of patients</td>
</tr>
<tr>
<td>Eye</td>
<td>Associated AV communications of the lungs and spinal cord reported (rare)</td>
</tr>
<tr>
<td>Retinal AV communication (retinal AV aneurysm) unilateral, usually non-progressive</td>
<td></td>
</tr>
<tr>
<td>Pulsating exophthalmos, proptosis</td>
<td></td>
</tr>
<tr>
<td>Visual loss: secondary to retinal or vitreous haemorrhage, vascular leakage in the macular region, or nerve fibre loss secondary to mechanical compression of the optic nerve or anterior visual pathway</td>
<td></td>
</tr>
<tr>
<td>Phthisis or partial phthiseplagia secondary to third nerve involvement in the midbrain</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Albert and Jacobiec.
Preliminary visual field loss following treatment with etanercept

Etanercept is a relatively new anti-tumour necrosis factor-α (TNF-α) therapy for inflammatory arthritides. Although there may be an association with uveitis, there have been no reports of patients experiencing visual disturbance. We present a case of a patient who developed symptomatic bilateral peripheral visual field loss shortly after initiation of treatment with etanercept.

Case report

A 59 year old woman was referred complaining of bilateral, sequential peripheral visual field disturbance, which developed during a course of etanercept therapy for rheumatoid arthritis. Initially she noticed a left upper temporal field defect occurring the day after receiving the first injection of etanercept. Following the second injection she became aware of similar visual field loss affecting the right eye. Two further injections were given (in a course of five); however, treatment was stopped prematurely once the treating physicians became aware of the patient’s visual symptoms. No further subjective visual field deterioration had occurred. Paradoxically, the arthritic symptoms had significantly improved.

On examination, the visual acuities were normal at 6/6 and 6/5 in the right and left eyes respectively. The anterior segment examination and intraocular pressures were normal. Funduscopy examination revealed no abnormalities. A 120° computerised visual field assessment was performed, revealing bilateral, concentric peripheral field loss (fig 1).

An urgent neurology opinion was sought. Systemic examination and further investigation including magnetic resonance imaging of the brain, visual evoked potentials, and electroneurography were all normal. A lumbar puncture was refused. An electroretinogram revealed reduced b-waves, suggesting retinal dysfunction involving the inner nuclear layer of the left eye.

Comment

Etanercept is a relatively new biological disease modifying antirheumatic drug for the treatment of active rheumatoid arthritis and is currently one of only two TNF-α blockers licensed for this use. It competitively inhibits cell surface binding of TNF and as such inhibits the pro-inflammatory effects of TNF and reduces joint inflammation. Common side effects are injection site reactions and upper respiratory tract infections. Although neurological events have been reported5 these are limited to confusion and difficulty walking and did not include visual phenomena. These effects also resolved completely or partially on cessation of etanercept. A report of a juvenile with new onset multiple sclerosis (MS) closely associated with the initiation of anti-TNF therapy has been published,6 and it is recommended that treatment be avoided in patients with pre-existing MS until further long term safety data are available.

To our knowledge there have been no previous reports of visual field loss following anti-TNF treatment. Judging by the temporal proximity of the onset of the visual symptoms and the initiation of etanercept therapy, we assume a causal link. From the investigations performed this appears to be a toxic retinopathy affecting the inner nuclear layer. Interestingly, the pattern of peripheral visual field loss in this case is similar to that seen with vigabatrin toxicity.

Although we could find no evidence from the literature for TNF-α involvement in retinal physiology in healthy eyes, it is notable there has been much interest in the role it may have in neuroprotection and neurodegeneration in the retina.7–9 Perhaps TNF-α has a role in normal retinal physiology that has yet to be elucidated.

This adverse reaction has been reported to the Medicines Control Agency.

References

Figure 1 Humphrey C120 visual fields demonstrating bilateral peripheral field loss.
of cells exhibited marked nuclear pleomorphism (Fig 2). There was an occasional spindle cell interspersed through the tumour but there were no mitotic spindles. Two ophthalmic pathologists rendered the diagnosis of atypical, necrotic iris melanocytoma.

Three years postoperatively, vision is 20/20 in the left eye, and IOP is 16 mm Hg without glaucoma therapy. There has been no reorganisation of a pigmented mass. On gonioscopy, there is I+TM pigmentation.

Comment
Several factors contribute to secondary open angle glaucoma in patients with iris melanocytoma: proximity of the tumour to the filtration apparatus; absence of tumour encapsulation with propensity to pigment dispersion; tendency for necrotic degeneration within the tumour that further enhances cellular sloughing; and secondary attraction of macrophages which engulf cellular debris and pigment. Pigment granules, viable and degenerated tumour cells and swollen macrophages obstruct the TM producing increased IOP, a condition coined melanomorphic glaucoma. Excision of the tumour via a pupil sparing partial iridectomy (when possible) accomplishes several goals: it supplies tissue for diagnostic purposes; it reduces tumour volume in the eye, allowing the TM to recover; and provides for an intact pupil.

Abrupt changes in clinical course such as exhibited by our patient raise the possibility of malignant transformation of the lesion. Malignant transformation of iris melanocytoma is rare. Nuclear pleomorphism, a cellular feature associated with malignant behaviour of pigmented tumours, is present in this tumour. Yet definitive pathological characteristics of malignancy were absent in our case. There has been no reformation of the lesion or recurrence of glaucoma after 3 years of follow up.

J C Zhao, D N Zacks, E S Gragoudas, L R Pasquale
Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA

Correspondence to: L R Pasquale, MD, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA; Louis_Pasquale@meei.harvard.edu

doi: 10.1136/bjo.2003.037150
Accepted for publication 3 November 2003

References

Pseudohypopyon after intravitreal triamcinolone injection for the treatment of pseudophakic cystoid macular oedema

Intravitreal triamcinolone injection is a safe and effective treatment for cystoid macular oedema (CMI) caused by uveitis, diabetic maculopathy, central retinal vein occlusion, and pseudophakic CMI. Potential risks include glaucoma, cataract, retinal detachment, and endophthalmitis.

We present a case of pseudohypopyon and sterile endophthalmitis following intravitreal triamcinolone injection for the treatment of pseudophakic CMO.

Case report
An 88 year old woman underwent phacoemulsification surgery which was complicated by posterior capsule rupture. Anterior vitrectomy with implantation of a silicone intraocular lens into the sulcus was performed. Postoperatively, CMO developed. This failed to respond to treatment with topical dexamethasone, topical ketorolac, and posterior sub-Tenon triamcinolone injection, limiting visual acuity to 6/24 at 7 months following the cataract surgery.

An intravitreal injection of triamcinolone acetonide (4 mg in 0.1 ml) (Kenalog, Bristol-Myers Squibb, Middlesex, UK) was administered through the pars plana with a 30 gauge needle using a sterile technique.

Three days later, the patient reported loss of vision which had developed immediately after the injection. The visual
Visual acuity recovered to 6/12. CMO (as demonstrated on optical coherence tomography) showed no cells present (fig 2).

Microscopy of the aspirated pseudohypopyon was performed and the pseudohypopyon was completely aspirated from the anterior chamber.

The following day, a 2 mm pseudohypopyon had reformed. The position of the pseudohypopyon was gravity dependent and shifted with changes in head position (fig 1B).

Aqueous and vitreous cultures were negative. Microscopy of the aspirated pseudohypopyon showed triamcinolone particles with no cells present (fig 2).

The pseudohypopyon, vitreous haze, and pseudoendophthalmitis characterised by 3 + anterior chamber cells (or particles). Severe vitreous haze prevented visualisation of the retina.

Because an infectious endophthalmitis could not be excluded, the patient was treated with intravitreal injection of cefazolin and vancomycin. Vitreous and aqueous taps were performed and the pseudohypopyon was completely aspirated from the anterior chamber.

The patient reported painless visual loss caused by severe vitreous haze developing immediately or soon after intravitreal triamcinolone injection. The absence of ocular pain, photophobia, ciliary injection, or iris vessel dilation suggests a non-inflammatory response and perhaps it would be appropriate to monitor such patients closely rather than administrating intravitreal antibiotics.

S D M Chen, J Lochhead, B McDonald, C K Patel
Oxford Eye Hospital, Oxford, UK

Correspondence to: S Chen, Oxford Eye Hospital, Woodstock rd, Oxford OX2 6HE, UK;
s-chen@rocketmail.com
doi: 10.1136/bjo.2003.033589
Accepted for publication 4 November 2003

References

Treatment of Erdheim-Chester disease with cladribine: a rational approach

Erdheim-Chester disease is a rare, life threatening lipid granulomatosis with fewer than 100 cases described in the world literature. The disease typically affects the long bones and symmetrical sclerosis of the diaphyseal and metaphyseal regions is pathognomonic. Extraskeletal manifestations may affect the lungs, pericardium, aorta, retroperitoneum, skin, and orbits and diabetes insipidus occurs in approximately 30% of cases. Erdheim-Chester disease is characterised microscopically by an infiltrate of lipid laden foamy macrophages (histiocytes), scattered Touton giant cells, chronic inflammatory cells, and fibrosis. The foamy macrophages can be distinguished from Langerhans cells on the basis of negative results on staining for S-100 protein and CD1a. Treatment of the disease has been on an ad hoc basis and no treatment regimen has been shown to be clearly superior.

This study documents the clinical findings in a patient with Erdheim–Chester disease, investigates the pathogenesis, and provides a rational basis for effective treatment.

Case report
This white man, aged 45, developed aching in his legs, night sweats, lethargy, and impotence in October 1988, for which no cause was found. His night sweats resolved by July 1989 and he was discharged. He presented in November 1990 with reduced vision (6/9) in the left eye, bilateral proptosis of 12 months’ duration, chemosis, ophthalmoplegia, and optic disc oedema. He still had sexual dysfunction and lethargy and now also had leg oedema and thrombocythaemia. At that time his thyroid function was normal, but erythrocyte sedimentation rate (ESR) and C reactive protein (CRP) were moderately elevated. A computed tomography (CT) scan of the orbits showed bilaterally enhancing masses lying predominantly within the muscle cone and encasing both optic nerves. An

![Figure 2](image-url)
Paravertebral tissue was biopsied under CT control. A diagnosis of Erdheim-Chester disease was made on the basis of non-Langerhans histiocytosis, negative for S-100 protein and without intracytoplasmic (Birbeck) granules in this and the previous biopsy specimens (fig 2). X-ray of the long bones showed the sclerosis and increased trabecular markings typical of this disease (fig 3).

He was treated with etoposide 50 mg daily and a reducing course of prednisolone, starting at 30 mg daily, without clinical improvement. Etoposide was increased to 100 mg daily with some improvement in the degree of proptosis and chemosis. However, his haemoglobin fell rapidly by 5 g to 8 g/dl and etoposide was discontinued, although a blood film suggested haemolysis or bleeding rather than etoposide induced myelosuppression. On prednisolone 30 mg daily, the haemoglobin rose and there was limited improvement in the proptosis. However, he developed back pain and long term high dose steroids were considered inappropriate.

In November 1999, his visual acuity was 6/6 in the right eye and 6/5 in the left. Colour vision and pupil reactions were normal. He had very restricted eye movements but was binocular with no diplopa. There was bilateral proptosis, right chemosis, and a soft tissue swelling at the left inner canthus. New clinical signs were increased swelling of both optic discs and the presence of chroidal folds bilaterally. Surgical debulking of the orbits was not possible as the xanthogranulomatous tissue surrounded both optic nerves and the external ocular muscles. Bony decompression was considered, but the patient was reluctant to have surgery and also he was a bad anaesthetic risk in view of his cardiac and pulmonary involvement.

In January 2000, hot spots were seen on a bone scan. Spiral CT of the chest showed increased and a CT scan of the thorax in April 2001 showed a decrease in the abnormal activity. Lung function initially improved, then stabilised. He has now been off treatment for more than 4 years and remains well. His exercise tolerance increased and a CT scan of the thorax in April 2001 showed a decrease in the interlobular septal thickening throughout the lungs. His visual acuity is currently 6/6 bilaterally; the proptosis has resolved, but he has residual, although much reduced, right chemosis (fig 1B). The external ocular movements are now full with no diplopa.

Comment

Erdheim-Chester disease is characterised by slow progression of multiple organ system dysfunction with a high mortality. In the largest review, of 59 patients, reported by Veyssier-Belot et al, common causes of death included pulmonary fibrosis and cardiac failure. Treatment of patients has been on an individual basis and no randomised controlled trials have been possible as the condition is so rare. Treatments have included systemic steroids, cytotoxic agents such as vinblastine, cyclophosphamide, doxorubicin and Adriamycin, and also interferon alfa. Local radiotherapy to the orbits has been used. The results of treatment have been generally disappointing. In the review by Veyssier-Belot et al, follow up data were available on 37 patients with a mean follow up of 2.7 years. Twenty two out of 37 (59%) patients died within the follow up period, eight within 6 months of diagnosis.

Very little is known regarding the pathogenesis of this disease. The monocytosis and the highly distinctive pattern of cytokine activation detected in the peripheral blood of this patient with Erdheim-Chester disease suggested monocyte activation as a significant part of the pathophysiology.

Cladribine is a purine analogue that is toxic to monocytes. Cladribine also destroys both resting and dividing lymphocytes and causes T cell depletion. In 1999, Saven and Burian described encouraging responses to cladribine in 13 patients with Langerhans cell histiocytosis. This information, together with our new evidence of...
Quantitative RT-PCR analysis of cytokine expression on this patient with Erdheim-Chester disease (solid bars) compared to seven normal controls (open bars). A highly distinctive pattern of cytokine activation was found in the peripheral blood. Interleukin-1 was raised expression compared with controls, consistent with monocyte activation. Smaller rises were seen in IL-6 and tumour necrosis factor α (TNF-α, IL-1α, IL-1β, IL-2, and IL-8 all had raised expression compared with controls, consistent with monocyte activation. Smaller rises were seen in IL-6 and tumour necrosis factor α (TNF-α).

Figure 5

Rational basis for treatment of this life threatening condition.

Acknowledgement

We gratefully acknowledge the assistance given by Professor J Lowe in the pathological analysis of the biopsy specimens.

C Myra, I Sloper, P J Tighe
Division of Ophthalmology, University of Nottingham School of Clinical Laboratory Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, UK

R S McIntosh, S E Stevens, P J Tighe
Division of Immunology, University of Nottingham School of Clinical Laboratory Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, UK

R S McIntosh
Division of Ophthalmology, University of Nottingham School of Clinical Laboratory Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, UK

R H S Gregson
Department of Diagnostic Imaging, Queen’s Medical Centre, Nottingham NG7 2UH, UK

M Sokal
Department of Ophthalmology, City Hospital, Nottingham NG5 1PB, UK

A P Haynes
Department of Haematology, City Hospital, Nottingham NG5 1PB, UK

R J Powell
Clinical Immunology Unit, Queen’s Medical Centre, Nottingham NG7 2UH, UK

Correspondence to: C Myra L Sloper, Neuro-Ophthalmology Department, The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; myra.sloper@dial.pipex.com
doi: 10.1136/bjo.2003.035584

Accepted for publication 5 November 2003

The authors have no proprietary interest in any aspect of this work.

References

www.bjophthalmol.com
Partial resolution of acute ascending motor polyneuropathy after enucleation of an eye with metastatic melanoma

Malignant melanoma is an immunological tumour, and the glycopeptides on the surface of melanoma cells share immunogenic similarity with cells in the central and peripheral nervous system. Several clinical signs have been suggested to result from this similarity including vitiligo, syndrome of inappropriate antidiuretic hormone secretion (SIADH), and chronic inflammatory demyelinating polyneuropathy.1-5

We describe a patient with metastatic melanoma in the eye, who developed uveitis associated with ascending motor neuropathy. Enucleation of her blind painful eye resulted in marked improvement in her neurological abnormalities.

Case report

A 21 year old woman with a history of stage III cutaneous melanoma presented with anterior uveitis in her left eye. Visual acuity, intraocular pressure, and posterior pole examinations were within normal limits. Right eye examination was unremarkable. A diagnostic anterior chamber tap, left eye, revealed melanoma tumour cells.

One month later she developed a profound ascending motor polyneuropathy compatible with the diagnosis of Guillain-Barré syndrome. Clinical examination showed weakness of her upper and lower extremities, and decreased reflexes with no signs of sensory neuropathy. Lumbar puncture demonstrated 3 white blood cells x 10^6/l. Magnetic resonance imaging of her thorax, cervical and lumbar spine showed no evidence of spinal cord or leptomeningeal infiltration.

The neurological symptoms worsened proportionally to the disease progression in her eye, and the level of neuron specific enolase (NSE) rose from a low value of 16 to a high value of 36 ng/ml. She was treated with several courses of high dose intravenous gamma globulin (IVIG) with slight but temporary improvement.

Six weeks after initial presentation, because of severe refractory disease in the left eye (fig 1), she underwent a left eye enucleation. Histopathological examination showed malignant melanoma involving the ciliary body, iris, trabecular meshwork, and vitreous cavity (fig 2). Since the enucleation her polyneuropathy has markedly improved. NSE decreased to 12 ng/ml (normal 0–10). She has continued to receive IVIG and autologous dendritic cell vaccine and, 18 weeks after enucleation, showed partial (>50%) resolution of the polyneuropathy with substantial but as yet incomplete recovery of lower and upper extremity weakness.

Comment

The patient presented with uveitis and metastatic melanoma in her left eye. She developed a severe ascending motor polyneuropathy compatible with the diagnosis of Guillain-Barré syndrome. Enucleation of the blind, painful left eye resulted in substantial clinical and laboratory improvement in the polyneuropathy.

Ascending motor polyneuropathy in our patient may have been caused by an immune reaction directed to antigens in the tumour that cross reacted in the nervous system. Marked improvement in her overall peripheral muscle strength after the enucleation suggests a relation between the progressive dysimmune polyneuropathy and the intraocular involvement. Although evidence of a tumour related immune response was shown by post-enucleation decrease in the level of NSE, a specific marker for metastatic disease in melanoma where its increase points to dysimmune polyneuropathy and the intraocular muscle strength after the enucleation.

Various paraneoplastic neuropathies have been described in association with cancer, including subacute sensory neuropathy/paraneoplastic encephalomyelitis,6 Guillain-Barré syndrome, and axonal polyneuropathy,7 specifically in melanoma: chronic inflammatory demyelinating polyneuropathy,8 ophthalmoplegia, and subacute motor axonal neuropathy.9

The relation between enucleation and improvement of the neuropathy is not clear; improvement may have been spontaneous remission. However, the appearance of neuropathy soon after the onset of uveitis and the partial (>50%) resolution after enucleation raise the possibility that molecular mimicry and antigenic cross reaction were the cause of the polyneuropathy. Enucleation, by reducing the cross reacting antigens, is likely to have contributed to resolution of the polyneuropathy.

References

Aspergillus keratitis following cornical foreign body

Recognition, diagnosis, and management of fungal keratitis remain difficult despite significant advances in our understanding of the disease.1 2 We report three cases secondary to cornical foreign body which were managed at Manchester Royal Eye Hospital (MREH).

Case reports

Case 1

A 22 year old man presented to MREH with a metallic cornical foreign body that was removed; chloramphenicol eye drops were prescribed.

He returned 3 days later with pain, hand movement vision, a round cornical ulcer, and a hypopyon. A cornical scrape was performed and he was treated with intensive topical antibiotic therapy. The Gram stain showed few fungal hyphae which were thought to be contaminants. The patient was reviewed by the cornical service 6 days after his injury. As
The patient was referred to MREH corneal service 29 days after his injury with no change in the clinical picture (fig 1B). The cornea was rescaped confirming presence of aspergillus infection. Topical treatment was changed to amphotericin eye drops and oral itraconazole was increased to three times daily.

Finally, a penetrating keratoplasty was performed with intracameral amphotericin-B (7.5 μg). Aspergillus fumigatus was present in the corneal button with a clear edge.

Phacoemulsification and lens implantation were carried out 2 months after the graft. Thirty months after keratoplasty the graft remained clear with 6/18 vision.

Comment
Most fungal keratitis is caused by filamentous fungi with the epidemiology varying throughout the world. It is believed to be rare in Britain especially after injury with a metallic foreign body. Our cases demonstrate the difficulties in establishing a diagnosis by culture. Two patients required a therapeutic keratoplasty, which eliminates 90–100% of fungal infections. In recent reports intracameral amphotericin has been used, as part of the medical treatment which may prove useful if aspergillus keratitis becomes more common in the Britain.

Case 2
A metallic corneal foreign body was removed from a 53 year old man; he was treated with chloramphenicol eye drops.

Two days later he developed a corneal ulcer with a hypopyon which was scraped and treated with intensive topical antibiotics. The corneal scrape showed a scanty growth of Aspergillus fumigatus. He was commenced on amphotericin eye drops 0.15% hourly and antibiotics were discontinued.

He was referred to MREH 23 days after his injury with no improvement (fig 1A). A second corneal scrape was performed which showed hyphal fragments on the Gram stain. Oral itraconazole 200 mg three times daily was added to treatment.

In view of the deteriorating clinical condition a penetrating keratoplasty was performed and amphotericin (7.5 μg) was given intracameral. Aspergillus fumigatus was present in the corneal button with a clear edge. Thirty months after surgery his best corrected vision was 6/6.

Case 3
A metallic corneal foreign body was removed in casualty from a 46 year old man; he was treated with chloramphenicol eye drops.

Two days later, he presented with increasing pain, hand movement vision, and a corneal ulcer which was scraped. The Gram stain showed a few inflammatory cells. The patient failed to respond to intensive topical antibiotics.

Aspergillus fumigatus was reported and he was treated with hourly natamycin and itraconazole eye drops, and oral fluconazole 200 mg twice daily. On day 23 fluconazole was discontinued and itraconazole 200 mg twice daily was commenced.

The patient was referred to MREH corneal service 29 days after his injury with no change in the clinical picture (fig 1B). The cornea was rescaped confirming presence of aspergillus infection. Topical treatment was changed to amphotericin eye drops and oral itraconazole was increased to three times daily.

Finally, a penetrating keratoplasty was performed with intracameral amphotericin-B (7.5 μg). Aspergillus fumigatus was present in the corneal button with a clear edge.

Phacoemulsification and lens implantation were carried out 2 months after the graft. Thirty months after keratoplasty the graft remained clear with 6/18 vision.

Comment
Most fungal keratitis is caused by filamentous fungi with the epidemiology varying throughout the world. It is believed to be rare in Britain especially after injury with a metallic foreign body. Our cases demonstrate the difficulties in establishing a diagnosis by culture. Two patients required a therapeutic keratoplasty, which eliminates 90–100% of fungal infections. In recent reports intracameral amphotericin has been used, as part of the medical treatment which may prove useful if aspergillus keratitis becomes more common in the Britain.

The clinical evolution of a kissing naeves after incomplete excision
We present an interesting case of a kissing naevus which was not completely excised during the patient’s childhood, 29 years before presentation.

Case report
A 33 year old white man complained of progressive thickening of the eyelids which caused significant inferior visual field defect with downgaze (fig 1). A large, circumorbital pigmented naevus in the right eye had been present since birth. There was minimal growth through early childhood. This mass did not cause ptosis nor was it amblyogenic. At 4½ years of age he had excision of the naevus of the right lower eyelid with reconstruction with a split thickness skin graft (fig 2). Of significance, he had incomplete excision of a kissing naevus from his eyelids at age 2. At age 6 a similar procedure was performed to address the upper eyelid and brow. The margin of the upper eyelid also had residual pigmentation.

When he was aged 33, we performed a biopsy to rule out malignant changes; the biopsy confirmed a diagnosis of dermal naeves. Subsequently, a complete excision of the mass from the right lower eyelid and reconstruction with a full thickness skin graft was performed.

Comment
A kissing naevus is a type of congenital compound naevus that affects equal portions of the upper and lower eyelid. Owing to its extension to the lid margins, the edges of the tumour touch or “kiss” during closure of the lids. The kissing naevus origin dates to melanocyte migration during the embryological fusion of the lids at the ninth week of gestation, producing the “kissing” or split naevus.

Congenital naeves occur in approximately 1% of all newborns, with the vast majority being less than 1.5 cm in size. Compound naeves possess features of junctional (arising
from the deeper layers of the epidermis or “junctional region”) and intradermal naevi. The lifetime risk of malignant degeneration in small congenital naevi is not clearly established. Large cutaneous melanocytic naevi (more than 4 cm), however, do give rise to melanoma. The risk of malignant transformation is 4.6% during a 30 year period.

Kissing naevi of the eyelids may be cosmetically objectionable and cause functional problems including ptosis and visual field defects. Management usually requires surgical excision and reconstruction with split or full thickness skin grafts. Initial, complete excision is important because residual tumour can grow, often with a more verrucous or thickened appearance making subsequent determination of malignant transformation and reconstruction challenging.

W Y Wu-Chen, C R Bernardino, P A D Rubin

Massachusetts Eye and Ear Infirmary, Harvard Medical School, Ophthalmic Plastic, Orbital and Cosmetic Surgery, 243 Charles Street, Boston, MA, USA

W Y Wu-Chen

Lankenau Hospital, Thomas Jefferson University, 100 Lancaster Avenue, Wynnewood, PA 19096, USA

References

Comments on confocal microscopy of Aspergillus fumigatus keratitis

We read with great interest the article of Avunduk and coworkers,1 who conducted a study in using confocal microscopy to evaluate Aspergillus fumigatus keratitis in treated and untreated rabbit eyes. They concluded that “confocal microscopy is a rapid and sensitive diagnostic tool for both the early diagnosis and non-invasive follow up of fungal keratitis.” In order to justify the statement, two issues of concern on the early diagnosis have to be addressed.

The first is about the sensitivity in having positive diagnosis in the untreated eyes in the first experiment. On day 2, all 14 samples were smear and culture positive for Aspergillus fumigatus, therefore confocal microscopy could not demonstrate any superiority in early diagnosis in terms of sensitivity. On days 14 and 22 their conclusion that “confocal microscopy was more sensitive than culture technique” also could not be drawn unless the authors could enlighten us with supplementary data on the percentages of positive culture in those periods together with their p values.

Another issue is about computation of statistical values in the second experiment. The authors implied that topical and orally treated eyes had significantly lower positive culture growth than the control group receiving no treatment on days 14 and 22 by listing p values of 0.002 and 0.003. However, in performing the χ² analysis again with the data provided, we can only achieve p = 0.391 and p = 0.280 on day 14 and p = 0.308 and p = 0.237 on day 22. We would suggest that statistical differences cannot be demonstrated in these parts of study, at least, with such a sample size.

D S Fan, D T L Liu, W-M Chan, D S C Lam

Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong

Correspondence to: Dorothy S Fan, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong; dorothyfan@hku.hk
doi: 10.1136/bjo.2003.038877
Accepted for publication 20 November 2003

Authors’ reply

We thank Dr Fan and coworkers for their letter and interest in our article. The conclusion drawn by us was that confocal microscopy was a rapid and sensitive diagnostic tool for both early diagnosis and non-invasive follow up of fungal keratitis, not that it was superior to culture and corneal biopsy staining techniques in the early stage of fungal keratitis. It is rapid compared to culture and biopsy staining techniques, since we were able to detect fungal hyphae in all rabbit eyes 2 days after fungal inoculation, but at least 2–3 days had to elapse to determine any fungal growth on Sabouraud’s agar. Moreover, O’Day et al1
reported that about one fourth of fungal cultures became positive only after 2 weeks. Confocal microscopy also showed that some time had to elapse. As stated in the abstract we wrote that “on days 14 and 22 confocal microscopy was more sensitive than culture technique in both treated and untreated animals, since not all cases of fungal keratitis could be cultured.” We think the conclusion drawn is valid in light of the data provided in the study. In the second experiment, six rabbits were treated with topical fluocinolone, seven were treated with oral fluconazole, and seven were left untreated. On day 14, we observed hyphal fragments (broken in treated corneas and full size in untreated ones) in each of 20 corneas by confocal microscopy. However, only eight of 20 scrapings grew Aspergillus fumigatus on Sabouraud’s agar culture. The difference between groups was statistically significant as is given in the text by utilising the χ^2 test. Similarly, on day 22 confocal microscopy revealed hyphal fragments in 14 corneas out of 20 (three in the topically treated, four in the orally treated, and seven in the untreated groups). At this stage only five corneal scrapings grew fungus on culture. The difference was statistically significant again as given in the article by utilising the χ^2 test. Thus, superiority of confocal microscopy over culture technique on days 14 and 22 in treated and untreated rabbits was supported well by the data presented in the article.

In the result section, we were attempting to determine the efficacies of topical and oral fluconazole treatment by culture. However, p values were not correct as a result of an error. The errors escaped both our and the reviewer’s attention. However, this part of the results section does not contain any information that could affect any conclusion drawn as a result of study data. Actually, this part was not directly linked to the main aim of the study. The authors wish to thank Dr Fan and coworkers for their careful attention.

We write in reference to the letter by Galloway et al. The authors report a single case of macular infarction in a patient who had been given intravitreal amikacin for endophthalmitis. They cite that single case plus some previous literature as a reason to support a change in the choice of antibiotic for intravitreal injection from the treatment guidelines based on the results of the Endophthalmitis Vitrectomy Study (EVS).

While aminglycoside induced retinal toxicity certainly can occur, we disagree with their statement that there is good evidence that aminglycosides should not be primary drugs of choice in this disease. There are several theoretical and practical advantages of aminglycosides over ceftazidime. Amikacin provides concentration dependent killing (so that the higher concentration of drug the less time is needed for it to work) which is not true for ceftazidime. This is an important issue since high concentrations of drug are administered by intravitreal injection, thus possibly allowing for more rapid kill with amikacin.

Amikacin is considered to be synergistic with vancomycin for certain Gram positive species, so its use provides benefit against Gram positive organisms, not just for Gram negative organisms. Gram positive organisms make up the overwhelming majority of cases of endophthalmitis. In addition, there has been a recent report that ceftazidime may precipitate in the vitreous at normal body temperature, possibly making it less available than one might wish in the vitreous cavity.

Finally, and very importantly, is the fact that amikacin has been found to be effective in a clinical trial but there is no such evidence yet available on ceftazidime. The only apparent advantage of ceftazidime is that it may be a somewhat safer drug in the sense that macular toxicity has not been reported. Even so, the incidence of macular toxicity is extremely rare (only one in 420 eyes in the EVS suffered macular toxicity possibly from the drug). In a very severe disease such as endophthalmitis a risk this low is worth tolerating when there may be substantial potential advantages.

References

Manual of Strabismus Surgery

Everyone with an interest in strabismus surgery should own a copy of this book. I congratulate Caroline MacEwen and Richard Gregson for producing a concise, portable and readable textbook of strabismus surgery. It is written in clear English and despite a comprehensive knowledge of the subject the authors appreciate that there are those who know rather less about it than they do. This book will be frequently read and referred to and is light enough to be rested on the patient’s chest while the pages are turned by an assistant using a curved artery clip.

It is arranged in three parts: “Assessment and principles,” “What to do,” and “How to do it” and for such a small book is surprisingly comprehensive. The illustrations are excellent and there are helpful flow diagrams. There are many useful tips such as the use of two squat hkins when resecting a muscle; hooking the lateral rectus from above so as to avoid catching the inferior oblique, and the use of the Fison retractor to gain exposure for the cataract procedure. As one who has sat at those great feet I recognise the gospel according to Fells and Lee. This book is an excellent distillation of their collective wisdom with added hints of Jamspolsky, both Scotts, and Helveston. It is an essential tool for trainee ophthalmologists. It will also be of use as a concise reference book to orthoptists and theatre nurses. Consultants will find this invaluable as will junior colleagues and nurses. This is a book not only for ophthalmologists but also for nursing tutors and theatre nurses. It is an excellent reference book to be read by anyone interested in ophthalmology.

Pediatric Oculoplastics Surgery

The foreword of this book describes the evolution of paediatric oculoplastics as a subspeciality in its own right, an inevitable consequence of the trend towards ever increasing specialisation. The reaction might therefore be that it is suitable material only for the minority of ophthalmologists who subspecialise in this field. In fact, the book should appeal to a far wider readership and, moreover, the ophthalmologists who subspecialise in this field. In fact, the book should appeal to a far wider readership, and would be of use to all ophthalmologists with any oculoplastic or paediatric interest. It has a strong multidisciplinary input, yet remains coherent as the content is always directed to the ophthalmologist. The reaction might therefore be that it is suitable material only for the minority of ophthalmologists who subspecialise in this field. In fact, the book should appeal to a far wider readership, and would be of use to all ophthalmologists with any oculoplastic or paediatric interest. It has a strong multidisciplinary input, yet remains coherent as the content is always directed to the ophthalmologist.
There are comprehensive sections on eyelid and nasolacrimal conditions, with the largest section dealing with orbital disorders. There is wide ranging coverage from simple, common conditions such as dermoids to complex craniofacial disorders. The systematic approach to the craniofacial disorders is particularly helpful, providing a useful tool in the management of this difficult area. It makes no claim to be a detailed surgical atlas, but rather is comprehensive in its account of the diagnosis, assessment, and management of each condition, with good illustrations and descriptions of the more common surgical procedures. The text is laid out logically, and is generally well written and easy to read. The authors have managed to combine an explanation of the principles of management, providing a general understanding, with the more in-depth discussions of the details when appropriate. As the editor stresses, children are not just little adults, and this book has excelled in demonstrating the importance of managing children with ocu-lopalstic and orbital diseases appropriately.

J Hsuan
Bristol Eye Hospital, Lower Maudlin Street, Bristol BS1 2LX, UK; james.hsuan@talk21.com

NOTICES

Cataract surgery
The latest issue of *Community Eye Health* (No 48) discusses a solution to reduce worldwide cataract blindness, including sutureless non-phaco cataract surgery. For further information please contact: Journal of Community Eye Health, International Resource Centre, International Centre for Eye Health, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK (tel: +44 (0)20 7612 7964; email: Anita.Shah@lshtm.ac.uk; website: www.jche.co.uk). Annual subscription (4 issues) UK£28/US$45. Free to developing country applicants.

Elimination of avoidable blindness
The 56th World Health Assembly (WHA) considered the report on the elimination of avoidable blindness (doc A56/26) and urged Member States to: (1) Commit themselves to supporting the Global Initiative for the Elimination of Avoidable Blindness by setting up a national Vision 2020 plan by 2005; (2) Establish a national coordinating committee for Vision 2020, or a national blindness prevention committee to help implement the plan; (3) Implement the plan by 2007; (4) Include effective monitoring and evaluation of the plan with the aim of showing a reduction in the magnitude of avoidable blindness by 2010; (5) To support the mobilisation of resources for eliminating avoidable blindness. The WHA also urged the Director-General to maintain and strengthen WHO’s collaboration with Member States and the partners of the Global Initiative for the Elimination of Avoidable Blindness as well as aid in the coordination and support of national capability.

XVth Meeting of the International Neuro-Ophthalmology Society

4th International Congress on Autoimmunity

The 4th International Congress on Autoimmunity will take place 3–7 November 2004 in Budapest, Hungary. The deadline for the receipt of abstracts is 20 June 2004. Further details: Kenes International Global Congress Organisers and Association Management Services, 17 Rue du Cerdier, PO Box 1726, CH-1211 Geneva 1, Switzerland (tel: +41 22 908 0488; fax: +41 22 732 2850; email: autoim04@kenes.com; website: www.kenes.com/autoim2004).

XVI International Congress for Eye Research

The XVI International Congress for Eye Research will be held on 29 August – 3 September 2004 in Sydney, Australia. For further information, please contact: icr2004@tourhosts.com.au (website: www.tourhosts.com.au/icr2004).

Tübingen University Eye Clinic holds teaching courses

The Tübingen University Eye Clinic will be holding teaching courses throughout the year and into 2005. In all cases, the scientific program has been organised by Professor Ingrid Kreissig (Department of Ophthalmology, Klinikum Mannheim, Theodor-Kutzer-Ufer 1-3, 69167 Mannheim, Germany; fax: +49 (0)621 383 3803; e-mail: ingrid.kreissig@augen.ma.uni-heidelberg.de). The programme of courses will include the following:

- Local Organization: Anne-Catherine Gribomont, MD, gribomont@oafa.ucl.ac.be
- Location: Brussels, Belgium.
- Congress language: English.

- Detachment Course with International Faculty on ‘Retinal and Vitreous Surgery with Case Presentations’ will be held in Xian, PR China, on 13–14 November 2004.
- Local Organization: Professor Yan-Nian HUI, Xijing Hospital, 15 Chang-le Xi-lu Rd, Xian, PR China.
- Location: Xian, PR China (tel: +86 29 8337 5371; fax: +86 29 8329 2763; e-mail: fmnuhyin@fmnu.edu.cn).
- Congress language: English with simultaneous translation into Chinese.

- Detachment Course with International Faculty on ‘Retinal and Vitreous Surgery with Case Presentations’ will be held in Surat Gujarat, India, on 9–10 December 2004, preceding the Ophthalmological Meeting of Western India, 10–12 December 2004.
- Local Organization: Dr PN Nagpal, Dr. Yogesh Desai, Dr Nitin Trivedi, Eye Laser Clinic, Mahal Park-B, Opp Fly Over Bridge, Athwa Gate, Ring Road, Surat – 395001 (fax: +91 261 22776021; tel : +91 261 2247188, -22460100; e-mail: eye_laserclinic@yahoo.com).
- Congress language: English.

- Detachment Course with International Faculty on ‘Retinal and Vitreous Surgery with Case Presentations’ will be held in Odessa, Ukraine, on 14–15 May 2005.
- Local Organization: Professor VV Vit, SS Rodin, The Filatov Institute of Eye Diseases & Tissue Therapy, Blvd. Francois 49/51 65061 Odessa, Ukraine (fax: +38 048(42)684851, e-mail: logay@farlep.net).
- Congress language: English with simultaneous translation into Russian.

- Detachment Course with International Faculty on ‘Retinal and Vitreous Surgery with Case Presentations’ in Prague, Czech Republic, on 3–4 September 2005.
- Local Organization: Professor MUDr. Pavl Rozsival, Dept. of Ophthalmology, Charles University, Sokolska 581, 500 05 Hradec Králové, Czech Republic (tel. and fax: +420 49 55 14 582, e-mail: rozsival@lbk.cuni.cz).
- Congress language: English.
Cystoid macular oedema with trypan blue use

We present a large comparative series of trypan blue use in cataract surgery. This series of trypan blue used in all eyes regardless of cataract severity may be unique. We found an apparent increased rate of cystoid macular oedema (CMO) associated with trypan blue use.

Melles et al’s report on the use of trypan blue in cataract extraction in 1999 combined with Apple et al’s series on dye enhanced cataract surgery facilitated widespread acceptance of this technique. The dye has been shown to stain basement membrane of lens capsule. Trypan blue is now widely used to assist in cataract extraction when visualisation of the anterior capsule is poor because of loss of red reflex. Trypan blue has also been used to improve contrast during cataract extraction in eyes with corneal opacities and to stain internal limiting membrane and epiretinal membrane during vitreoretinal surgery. The safety profile of trypan blue appears good with no adverse effects reported in several large series.

Patients and methods

In this retrospective, comparative study we identified a consecutive series of 75 patients (group A) in whom trypan blue had been used “routinely” regardless of cataract type or density. A consecutive series of 94 patients (group B) who had routine phacoemulsification by the same surgeon were used as a control group.

Apart from the use of trypan blue to facilitate capsulorhexis, standard phacoemulsification techniques were used in both groups.

The data from the two cohorts were compared using mean and standard deviations for continuous variables such as age, and proportions for categorical variables such as sex. For acuity a numeric ordinal score was created from 1 to 10 by placing all the recorded acuities in order. This numeric ordinal score allowed us to plot the data using box plots, and to analyse the data using non-parametric methods to produce p values where necessary.

Results

The two groups compared favourably with regard to age and sex (table 1) but the preoperative best corrected acuity was worse in group A (fig 1A). Group A also had a higher proportion of patients with ocular co-morbidity (table 1).

If all the cases with co-morbidity are removed from both groups, the preoperative best corrected acuity remains worse in group A, suggesting that the cataracts in this group were visually of greater significance (fig 1B). There were four patients with clinically apparent CMO in group A and no cases in group B. The CMO was confirmed in all cases by the vitreoretinal specialist (PRS) using standard biomicroscopy techniques with a fundal contact lens. The incidence of clinically apparent CMO was 5.3% in group A and 0% in group B (p = 0.037).

All cases of CMO were treated with a combination of topical steroid and non-steroidal anti-inflammatory drops and resolved completely with good visual outcomes.

Comment

Cystoid macular oedema resulting in visual loss occurs in up to 3.8% of cases following cataract extraction by phacoemulsification without posterior capsule rupture and up to 13% of cases with posterior capsule rupture. Urseil et al demonstrated an incidence of angiographic CMO of 19% following phacoemulsification (none of the patients in this group had clinically apparent CMO).

CMO has not been reported as a result of trypan blue use, but trypan blue has been shown to cause damaged photoreceptors in rabbit eyes after intravitreal injection. Trypan blue has also been shown to be carcinogenic and teratogenic in animal studies. The clinical significance or relevance to a human population of the animal studies is uncertain.

Trypan blue has been shown to inadvertently stain posterior capsule and intraocular lens implants. None of the patients in our group who developed CMO had associated posterior capsule rupture or ocular co-morbidity and all of the cases were treated successfully with good visual outcomes.

Dada et al and Sharma et al suggested the use of trypan blue in routine cases to aid in training of junior surgeons. Our study would suggest some caution with this approach in view of the apparent increase in the incidence of CMO with trypan blue use.

Table 1 Age and sex distribution and co-morbidity

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group A (n = 75)</th>
<th>Group B (n = 94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (SD)</td>
<td>79.4 (9.8)</td>
<td>78.4 (8.5)</td>
</tr>
<tr>
<td>Sex:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>25 (33.3%)</td>
<td>31 (33%)</td>
</tr>
<tr>
<td>Male</td>
<td>50 (66.7%)</td>
<td>63 (67%)</td>
</tr>
<tr>
<td>ARMD</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>CVA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ERM</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

ARMD, age related macular degeneration; CVA, cerebrovascular accident; ERM, epiretinal membrane.
The preoperative best corrected acuity was decreased in the group in which trypan blue was used. This suggests that the cataracts in this group were of greater density, possibly requiring more energy to remove using phacoemulsification. The energy used during surgery however was not recorded. The CMO may therefore be a reflection of higher energy used in degenerate cataract.

A prospective trial with matched cohorts is required to prove the suggested higher incidence of CMO with trypan blue use. OCT scanning of the maculas in both groups would give non-invasive objective evidence of CMO. We suggest the following steps to limit the apparent complication of CMO with trypan blue use:

- Use the smallest amount and lowest concentration of trypan blue possible (trypan blue in concentrations as low as 0.0125% has been shown to effectively stain the anterior capsule).
- Increase postoperative steroid or anti-inflammatory drops prophylactically.
- Use only in appropriate cases—that is, with poor visualisation of the anterior capsule.

P Gouws, M Merriman, S Goethals, P R Simcock, R J Greenwood, G Wright
Bristol Eye Hospital, Lower Maudlin Street, Bristol BS1 2LX, UK
Correspondence to: P Gouws, Bristol Eye Hospital, Bristol, UK; pieter@gouws.freeserve.co.uk

doi: 10.1136/bjo.2004.041756

Accepted for publication 12 February 2004

References

Familial intraocular cysts in association with anisometropia

Vitreous cysts are rare. Their origin is postulated to be a congenital remnant of the primary hyaloid system or ciliary body pigment epithelium. Although most vitreal cysts are asymptomatic, some may cause intermittent visual field defects. Treatment is seldom indicated, though laser photocoagulation or vitrectomy have been suggested. Iris cysts include iris pigment epithelial cysts and stromal cysts. The former may get dislodged into either the anterior chamber or into the vitreous chamber. They become symptomatic when they enlarge and occlude the visual axis. Treatment includes aspiration or surgical excision of the cyst.

Both vitreous and iris cysts have been previously reported as sporadic findings. In this report, we present the clinical and echographic manifestations of intraocular cysts in two siblings.

Case report

Two sisters, 11 and 3 years old, were referred for evaluation because of intraocular cysts and amblyopic fellow eyes. They were the products of a full term normal pregnancy with an uneventful perinatal history. Their parents were not relatives. Past medical history was unremarkable. The children in the family were reportedly healthy with no ocular pathology but were inaccessible for examination.

The older sister was known to have worn glasses since the age of 7 years. She complained of intermittent obscuration of vision in her right eye. Her vision was 6/12, J1 right eye and counting fingers at 1 metre with J14 left eye. By indirect ophthalmoscopy of her right eye, a round pigmented, cystic structure was observed in the vitreous cavity (fig 1). The left fundus showed myopic choriotinal changes with a tilted optic disc. Retinoscopy showed marked myopic anisometropia of +1.00 −1.25 ×75° right eye and −10.30 −2.00 ×95° left eye. Ultrasonography disclosed a 0.35 mm cystic, round, hypoechoic vitreal structure (fig 1). It was partially mobile with vitreal after-movements and was tethered to fine vitreal strands. Its walls showed internal reflectivity of 60%, whereas its contents had very low (<5%) reflectivity. The younger sister was fitted with spectacles at the age of 7 months because of anisometropic myopia. Her visual acuity (picture cube) was 0.03 right eye with unsteady fixation and 0.2 left eye. In her left eye a cystic, pigmented lesion was attached to the posterior iris surface and extended into the anterior vitreous (fig 2). It was located in the superotemporal quadrant causing adja- cent lenticular cortical opacities. Indirect ophthalmoscopy revealed bilateral mild ref- ractive myopic changes. High frequency echo- graphy of the iris lesion disclosed a cyst with hypoechoic content measuring 3.68 mm in diameter (fig 2). Cyclogenic refraction showed anisometropia of −7.5−1.00 ×90° right eye and −0.5−3.50 ×80° left eye.

Figure 1 (A) Homogeneously pigmented vitreous cyst. (B) B-scan echography that demonstrates a round, echolucent vitreous cyst bound by fine vitreal strands.

www.bjophthalmol.com
with anisometropic amblyopia look normal to the family, leading to delay in detection and treatment.

The physical characteristics of the vitreous cyst we described, including its confinement to the region of Cloquet’s canal, are similar to those reported by others. This suggests that the cysts may be remnants of the persistent fetal vasculature, though this manifestation was not included in Goldberg’s description of this disease. However, since no surgical excision was performed, we may postulate regarding their cellular origin. Nork and Millecchia1 suggested after histopathological studies, that the cyst origin was pigment epithelial-type cells. In our study, indirect evidence that the cysts originated from pigment epithelium include their homogeneous brown pigmentation, medium reflectivity, and continuation of iris cyst with the posterior iris surface. The cellular origin of the vitreal cyst is less obvious. It can either be a primary congenital hyaloidal remnant or a cyst that detached from the iris during childhood. Only few have reported on vitreous cysts jarring loose from the ciliary body pigment epithelium.2

The poor vision in the fellow eye (without cyst) was attributed to the high anisometropia present in both sisters. They were prescribed glasses with anti-amblyopic therapy by patching. No invasive therapy of the cysts in the eye with better vision was recommended.

Comment
This reports the unusual association between vitreous and iris cysts found in two siblings. The familial clustering of pigmented intraocular cysts suggests a hereditary aetiology in these siblings. Sallo et al1 reported on the occurrence of primary marginal pigment epithelial iris cysts in four members of one family, thus postulating an autosomal dominant heredity pattern. Nork and Millecchia2 reported an association between vitreous cyst in a patient and corneal dermoid in her son. A familial association between vitreous cyst and iris cyst was not previously reported. Our study, in accordance with previous reports, emphasises the need for examination of family members once an intraocular cyst has been diagnosed in a young child.

The second unusual association described in these siblings is the deeply amblyopic fellow eye with high anisometropic myopic astigmatism. It is not clear whether axial myopia developed because of the amblyopia or whether the amblyopia is secondary to anisometropia. Amblyopia in anisometropia results from the suppression of cortical vision centres that receive inputs from the chronically defocused eye. Also, the eyes of a child

References

Central retinal artery occlusion and ophthalmoplegia following spinal surgery
Visual loss and ophthalmoplegia are very infrequent complications after spinal surgery. Visual loss may be caused by ischaemic optic neuropathy, central retinal artery or vein occlusion, or occipital stroke. Previous reports have attributed this complication to patient positioning, intraoperative blood loss, and controlled hypotension or shock. Associated risk factors include anaemia, prolonged surgical time, bradycardia, hypertension, diabetes, smoking, vascular disease, and increased blood viscosity. Ophthalmoplegia after spinal surgery is even more unusual than visual loss, and only few reports exist in the literature. Moreover, magnetic resonance image (MRI) studies to differentiate between cavernous sinus thrombosis and direct compression of orbital contents have not been previously described. We therefore report two patients who developed this unusual combination of ophthalmoplegia and central retinal artery occlusion (CRAO) after spinal surgery.

Case 1
A 62 year old male ex-smoker underwent a L2–L3 posterior spinal decompression and segmental instrumentation for lumbar stenosis and scoliosis, in prone position with ocular protection (gauze swab and tape). The surgery lasted 2 hours and 45 minutes. Before the procedure blood pressure was 140/60 mm Hg and during operation it was maintained at 90/60 mm Hg. Just after surgery he complained of visual loss and left ocular and nasal pain. Examination revealed left palpebral oedema, local erythema, blinding, and total ophthalmoplegia of the left eye. Left pupil was dilated and fixed. The funduscopic examination showed retinal oedema, a central cherry-red spot at the macula, and attenuated arteries. The rest of his neurological examination was normal. The haematuria dropped from 43% to 34%. The brain MRI was normal and the orbit MRI revealed enlargement and hyperintensity of left ocular muscles in T2 weighted images sparing their tendons (fig 1). Ocular motility recovered in 4 weeks but visual loss persisted until the last follow up at 7 months.

Case 2
A 23 year old man with a history of tobacco abuse and asthma underwent a prolonged cervical arthrodensis in prone position caused by C7 vertebral collapse with spinal contusion. Immediately after surgery he complained of left visual loss and he was referred to our hospital. Details of duration of surgery, ocular protection, intraoperative blood pressure, and haematocrit were unavailable. Upon examination he looked normal but his palpebral oedema, orbital pain, and total external ophthalmoplegia. The funduscopic examination revealed a pale retina with a macular樱桃红点和视神经萎缩。MRI studies showed a normal macula, and attenuated arteries. The rest of his neurological examination was normal. The MRI studies showed a normal brain, but swelling of the left extraocular muscles; MRI angiography and ophthalmic echo Doppler were normal. After 3 months

Figure 1 MRI of the orbit. T2 weighted image shows proptosis and oedema of extraocular muscles in the left eye, sparing their tendons.

Figure 2 (A) Cystic structure extending from the posterior layer of the iris in the superotemporal quadrant. (B) High frequency echography that shows a cystic structure attached to the posterior iris.
vision did not recover but ocular motility partially improved.

Comment
Our two patients developed complete ophthalmoplegia and CRAO after spinal surgery. Intraoperative ocular protection was used at least in the first patient. Common features included prone position and postoperative signs of orbital swelling. Imaging studies revealed signs of oedema in extraocular muscles sparing their tendons. To our knowledge, extraocular muscles abnormalities in MRI have not been previously reported. Ophthalmoplegia partially improved in one patient and fully recovered in the other within a few weeks, but visual loss persisted in both cases.

Steven et al., in a retrospective review of 3450 spinal surgeries, identified seven patients (incidence 0.2%) with visual loss caused by ischaemic optic neuropathy, ocipital infarction, or central retinal vein occlusion, but neither presented with CRAO or extraocular muscle abnormalities.

Only few patients with CRAO following surgery have been previously described in the English literature (table 1). Moreover, Little1 analysed 27 930 cases of controlled hypotension and surgery. Intraoperative ocular protection was given. Since the original report of Slocum et al.1, it has been emphasised that CRAO may be the result of extrinsic ocular pressure caused by head rest or anaesthetic mask malposition in the presence of hypotension, shock, and prolonged anaesthesia.3,10–11

Ophthalmoplegia related to spinal surgery is also an exceptional complication. West et al. described a patient who developed unilateral total extraocular muscle palsies and unilateral visual loss following scoliosis surgery. An orbit computed tomography scan performed 1 week later showed left proptosis and swelling of the left medial rectus and superior rectus. The authors suggested that perioperative ocular compression might be the cause. Wolfe et al. reported a young woman who suffered right CRAO after an instrumented spinal surgery. Postoperatively, the patient had blindness, moderate ptosis, restriction of the extraocular movements, and parasthesias in the supraorbital region of the same eye. A CT scan of the brain and orbits showed only mild oedema of the right optic nerve. Ocular motility improved but the visual loss did not. Although prognosis is usually very poor, a recent patient described in Japan was treated successfully with urokinase and PGE1, stellate ganglion block, and hyperbaric oxygen therapy.11

Hollenhorst et al. reported eight cases of unilateral visual loss after inadvertent orbital pressure during general anaesthesia for neurosurgical procedures. The most severe cases had ptosis, paresis, and paralysis of extraocular muscle movements with no recovery. Moreover, they provoked visual loss and ophthalmoplegia by orbital compression for 60 minutes in seven rhesus monkeys, in the setting of hypovolaemia and hypotension. They proposed that partial or complete collapse of the arterial and venous channels of the orbit, occurred as a result of a tamponade action of the ocular contents. When the external pressure is released, the ischaemic vascular channels dilate and there is a transudation of fluid through the permeable walls into the tissue spaces. This results in orbital oedema, proptosis, paresis of ocular movement, and massive oedema of the retina. Based on findings from this animal model, it is likely that external pressure during the surgical procedure induces occlusion of the arterial and venous orbital vessels. The increased MRI signal in extraocular muscles is probably the expression of postischaemic oedema facilitated by the richer vascular supply and the more prominent extravascular space characteristic of these muscles.12 Reversibility of ophthalmoplegias will probably depend on the degree of ischaemia suffered by both the extraocular muscles and the III, IV, and VI cranial nerves.

CRAO and ophthalmoplegia are unusual, but severe complications after spinal surgery. Postoperative signs of orbital swelling, only in the affected eyes, were clear evidence of intraoperative compression in our patients.

The increase in intraorbital pressure associated with hypotension, shock, anaemia, prolonged operative time, and bradycardia-hypotension are considered to be the main risk factors for developing CRAO and ophthalmoplegia. Adequate eye protection during surgery, and meticulous attention to keep the eyes free from pressure, can reduce the risk of these potentially avoidable serious complications.

Acknowledgement
We thank Dr John Stewart for his critical reading of the manuscript.

M J Halfon, P Bonardo, S Valtiens, M C Zaffaroni, M M Fernandez Pardal, D Ribero Ayerza, R Eber, P Anderson, R C Reisin
Hospital Britanico, Perdriel 74, Buenos Aires C1280ABE, Argentina

Correspondence to: Dr Mario J Halfon, Hospital Britanico, Perdriel 74, Buenos Aires C1280ABE, Argentina; mjhalfon@yahoo.com
doi: 10.1136/bjo.2003.039651

Accepted for publication 14 February 2004

References
8 Hollenhorst RW. Svenn HJ, Benoit CF. Unilateral blindness occurring during anaesthesia for
I read with great interest the article by Isenberg et al. The authors deserve to be commended for their pioneering interest in childhood blindness. There are certain points that I would like to clarify and supplement with regard to their study.

(1) The authors have mentioned that only babies born by a vaginal delivery were studied, since the eyes of babies delivered by caesarean section were previously proved to be nearly always sterile. This would result in a gross underestimation of the incidence of ophthalmia neonatorum in this study, for the following reason.

By convention, ophthalmia neonatorum is defined as conjunctivitis arising within 1 month after birth. Hence, some of these conjunctival infections could originate from sources other than the maternal vaginal and cervical flora. In fact, some cases of ophthalmia neonatorum could be those caused by *Staphylococcus aureus*, which may have originated at home, as previously reported by the authors themselves. In the same study, no significant difference in the frequency or type of infection was found among the infants delivered vaginally or by caesarean section.'

Other authors, too, have made similar observations. Krohn et al. have found some cases of ophthalmia neonatorum to have been caused by *Escherichia coli*, which was the commonest isolate. They concluded that most of the cases of ophthalmia neonatorum were acquired postnatally. In the light of these previously reported studies, I feel that exclusion of cases that were delivered by caesarean section was not warranted and weakens the power of this study. The efficacy of the second drop of povidone-iodine was not strongly significant proportion of the cases of ophthalmia neonatorum (those sections affecting the babies delivered by caesarean section).

(2) It would be relevant to note the percentage of ophthalmia neonatorum cases with neonatal dacryocystitis due to congenital nasolacrimal duct obstruction in this series. Such cases obviously would not have benefited from a second drop of povidone-iodine.

(3) The Indian study by Verma et al. found a seasonal incidence of ophthalmia neonatorum with two peaks: in February and May–June, in most probability as a result of the monsoon and the hot tropical climate with the attendant eye seeking flies. It would be interesting to see if the incidence of such seasonal variation was noted in this study, which was carried out in Kenya, a country with a hot tropical climate, like India. If so, the efficacy of the second drop could be investigated again during such peaks.

V Vedantham

Correspondence to: Vasumathy Vedantham, Retina-Vitreous Service, Arrowhead Eye Hospital and Postgraduate Institute of Ophthalmology, 1 Anna Nagar, Madurai - 625 020, Tamilnadu, India; drvvasumathy@yahoo.com

doi: 10.1136/bjo.2004.042846
Accepted for publication 22 January 2004

References

Authors’ reply

We greatly appreciate the inquiry of Dr Vendantham and are happy to reply to his questions.

While he is correct regarding the definition of ophthalmia neonatorum including all infections acquired by an infant during the first 30 days of life, for the purposes of our study, we were primarily interested in those cases resulting from neonatal exposure in the birth canal. This source of ophthalmia neonatorum is the one that would be influenced by the type of delivery, while technically still within the same question since the reflux from the tear duct causing this infection generally does not arise until well after the first day of life.

The proportion of ophthalmia neonatorum cases acquired postnatally compared with those acquired during the birth process probably differs by country. The difference in predominant causative organisms (*Staphylococcus aureus* and *Enterooccus* in the former versus *Escherichia coli* in the latter) probably reflects the origin of the infection. Historically, in Kenya a high proportion of the infections probably arose from the birth process as reflected in the type of infecting organism. Thus, our Kenyan study was primarily directed towards those infections acquired during birth.

The fact that ophthalmia neonatorum in some countries seems to peak in certain seasons and not in others should cause increased vigilance for this disorder in those countries. Our study, however, encompassed more than one full year of births in Kikuyu, Kenya. Therefore, the study included both the peaks and troughs of the incidence of ophthalmia neonatorum.

We thank Dr Vendantham for his interest and hope that in many countries, including India, ophthalmia neonatorum prophylaxis will either continue unabated or be initiated preferentially with the use of povidone-iodine.

S J Isenberg, L Apt

UCLA School of Medicine, Harbor-UCLA Medical Center, 1000 W Carson Street, Box 6, Torrance, CA 90509, USA

Correspondence to: S J Isenberg, UCLA School of Medicine, Harbor-UCLA Medical Center, 1000 W Carson Street, Box 6, Torrance, CA 90509, USA; isenberg@ucla.edu

doi: 10.1136/bjo.2004.045096
Accepted for publication 19 February 2004

Retinectomy for intractable glaucoma

We read with interest the article by Joussen et al. on the long term results of retinectomy for the treatment of intractable glaucoma. We congratulate the authors for studying this innovative method for the management of refractory glaucoma with a long follow up of 5 years.

The high incidence of complications in the study, however, has aroused our concern as only 15.9% of patients completed the study uneventfully. Further vitreoretinal surgeries were required in 47.7% because of retinal complications. Moreover, the incidence of hypopyon, phthisis, and enucleation was 25%, 20%, and 16% respectively and these figures are higher compared with other treatments such as glaucoma implants and cyclodiode. We have previously studied the use of the Ahmed valve implant for complicated glaucoma and hypopyon, phthisis, and enucleation occurred in 10.8%, 3.1%, and 1.5%, respectively. A recent study on the management of refractory glaucoma by cyclodiode similarly found a low rate of hypopyon and phthisis of 9.5% and 5.3% respectively. The high complication rates in the study by Joussen et al may be because of the negative case selection with a high incidence of aphakic (30%) and infantile and juvenile glaucoma (7%). A further controlled study comparing retinectomy with other treatments may therefore be warranted.

In this evidence based era, emphasis should be placed on outcomes which are “patient oriented evidence that matters” (POEMs). It was stated by the authors that the main intentions of the surgery were to relieve pain and to preserve the eye without discomfort. Unfortunately, these POEMs were not included in the final outcome measures. Instead, success was determined...
by “disease oriented evidence” (DOE) like intraocular pressure and retinal attachment, which are surrogate outcomes. These DOE methods correlate well with the patients’ symptoms and it would be valuable if the authors can include the level of pain and discomfort as other outcome measures for the study.

V W Y Wong, T Y Y Lai, D C Lam
Hong Kong Eye Hospital, 47K Argyle Street, Kowloon, Hong Kong

Correspondence to: Dr Timothy Y Y Lai, Hong Kong Eye Hospital, 47K Argyle Street, Kowloon, Hong Kong; tyylai@nhkgov.hk
doi: 10.1136/bjo.2004.042820

Accepted for publication 22 January 2004

References

Blue light and the circadian clock

Dr’s Mainster and Sparrow have provided an excellent perspective on the relative merits and difficulties of extending intraocular lens (IOL) absorption into the blue portion of the spectrum.

However, they have not considered an unintentional consequence of blocking the blue portion of the spectrum—reducing the activity of intrinsically photosensitive retinal ganglion cells. These cells subserve several non-visual ocular photoreceptive tasks, most prominently the entrainment of the circadian clock to external light-dark cycles. Pupillary light responses in mice are also at least partially controlled by this system, which appears to use a novel opsin (melanopsin) and possibly also a flavoprotein (cryptochrome) as photopigments.

Experiments in mice have suggested that the action spectrum for these photopigments peak in the blue, at approximately 480 nm, but with substantial sensitivity to blue light to 430 nm. This system appears to be functional in humans as documented by the medical information jungle.

Author’s reply

I appreciate Van Gelder’s thoughtful comments regarding the potential consequences of a ultraviolet + blue light absorbing intraocular lens (IOL) on circadian rhythmicity. I agree that the clinical importance of retinal ganglion photoreceptors is currently unknown and that decreasing the amount of light reaching blue might affect their function. Conversely, if photosensitive ganglia respond to temporal changes in their blue light exposure rather than just the magnitude of that exposure, a ultraviolet + blue light absorbing IOL may not impair ganglion function.

Van Gelder re-emphasises our finding that IOL chromophore selection balances the potential loss of useful visual function against a reduction in the risk of acute ultraviolet-blue phototoxicity. Our paper did not state, however, that ultraviolet + blue absorbing IOLS were desirable for people with outer retinal degeneration. Indeed, blue light is more important in scotopic than photopic vision. Individuals with age related macular degeneration have greater night-time visual problems than their peers without it, and these scotopic problems may be exacerbated if a significant amount of blue light is blocked by an IOL.

R N Van Gelder
Washington University Medical School, Campus Box 8096, 660 S Euclid Avenue, St Louis, MO 63110, USA; vangelder@vision.wustl.edu
doi: 10.1136/bjo.2004.042861

Accepted for publication 22 January 2004

Modification of classification of ocular chemical injuries

A recent paper by Kobayashi and co-workers1 on temporary amniotic membrane patching for acute chemical burns highlights the difficulty in the consistent classification of this type of injury.

Roper-Hall’s classification of acute chemical injuries to the eye is based on the original classification of Ballen2 and there is little difference between them. However, in neither classification is the grade based on the most severe sign. This immediately leads to the problem of trying to classify an eye having, for example, corneal signs of one grade and conjunctival signs of another. There is also difficulty in distinguishing the conjunctival and limbal injuries.

Dua et al3 recognised the problem of assessing limbal stem cell damage and proposed a quasi-analogue scale in order to incorporate intergrade variations. They suggested using limbal fluorescein staining as a marker of limbal stem cell damage. However, their grading scheme is complex and departs significantly from that of Roper-Hall. Although fluorescein staining is a useful sign, it does not necessarily imply limbal stem cell damage or failure and has not been shown to be a better index of limbal damage than perilimbal ischaemia. Importantly, it is also becoming apparent that both the fornices and mucocutaneous junction of the conjunctiva are important for conjunctival regeneration.4 In fact, Roper-Hall stressed the importance of involvement of contiguous areas of the conjunctiva, which may lead to symblepharon formation.5 Although there are limitations with Roper-Hall’s classification, it is simple and remains popular. Rather than replace Roper-Hall’s and Ballen’s classification,4,7 modification, which addresses some of the issues raised and makes the classification more robust.

One of the questions that needs to be answered is whether to base the grade of injury upon the most severe sign or on a combination of ocular surface signs. A combination of signs using three parameters (cornea, limbus, and conjunctiva), each with three levels requires 27 possible combinations to avoid crossover. To avoid this complexity and without evidence to indicate a difference in prognosis, it would seem reasonable therefore to base the grade of injury on the most severe sign.

Although limbal ischaemia does not necessarily imply limbal stem cell failure, it remains to be shown that it is less indicative than fluorescein limbal staining of tissue damage. We propose therefore to continue to use limbal ischaemia in the grading of injury.

With regard to conjunctival involvement, in order to be able to include the total area of conjunctival involvement, we suggest extending conjunctival surface into bulbar and tarsal areas, as is natural. The bulbar and tarsal conjunctiva comprise approximately two thirds and

www.bjophthalmol.com
Conical involvement in terms of prognosis remains an area of difficulty. Although it may be assumed that limbal and conjunctival damage implies a worse prognosis than isolated corneal damage, this has yet to be shown. In addition, a severe chemical injury involving the cornea but not the limbus, or vice versa, would be expected to be an uncommon event. We therefore propose to retain the degree of corneal damage (as proposed by Roper-Hall and Ballen1 in grading of the injury (see table 1).

Thus, grade I is identified by any isolated corneal epithelial injury. Grade II includes limbal or conjunctival involvement, but involves less than one third of the area involved. Grade III includes either a hazy cornea, defined as obscurity of the iris or pupil details (as per Roper-Hall’s and Ballen’s original descriptions), and/or greater than one third of limbal or conjunctival damage. With the advent of recent surgical techniques such as amniotic membrane transplants and limbal allografts, the prognosis of more severe ocular chemical injuries previously classified as Roper-Hall grade IV have improved and no longer carry a uniformly poor prognosis.1 Therefore, we reason that these cases can be included in grade III of our proposed classification.

In conclusion, in the absence of good evidence for re-classifying ocular surface injuries, it would seem reasonable to keep to the Roper-Hall/Ballen classification and to move it forward by addressing the weaknesses of that system. We hope that the proposed grading system improves the consistency with which chemical injuries are reported in the literature, serves as a basis for controlled comparative evaluation of modern treatment, and stimulates further work in this area.

Table 1

<table>
<thead>
<tr>
<th>Grade</th>
<th>Cornea</th>
<th>Limbal ischaemia</th>
<th>Conjunctival involvement</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Clear epithelial damage only</td>
<td>None</td>
<td>None</td>
<td>Good</td>
</tr>
<tr>
<td>II</td>
<td>Clear epithelial damage only</td>
<td><1/3</td>
<td><1/3</td>
<td>Good</td>
</tr>
<tr>
<td>III</td>
<td>Hazy cornea OR >1/3</td>
<td>OR >1/3</td>
<td>Guarded</td>
<td></td>
</tr>
</tbody>
</table>

References

Author’s response

The response by Harun et al is to be commended in so far as it highlights the problems with the current Roper-Hall classification system, and the difficulties it poses in evaluating outcome and efficacy of treatments in ocular surface burns. As a proposed modification, however, it is a retrograde step.

The three major issues with the Roper-Hall classification were that it lumped all injuries with 50% or more of limbal involvement into one category, did not take into account conjunctival involvement in the actual classification, and placed undue emphasis on the degree of corneal haze.

The proposed modification by Harun et al goes a step backwards by grouping all injuries with more than 33% limbal involvement into one category. The grading of a patient with all 12 clock hours of limbus involvement would then be the same as one with just over 3 clock hours of limbus involvement.

The proposed modification retains corneal haze as a grading parameter and includes a hazy cornea in grade 3 only. There are many chemical injuries, which involve 3–6 clock hours of limbus (30–50%) with a clear cornea. These do not fall well in any grade in the proposed new classification and highlight the inherent

Correspondence to: Mr Shabbir Harun, 8z Link, Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP, UK; harun@doctors.org.uk

doi: 10.1136/bjo.2004.046797

Accepted 15 March 2004
problem in the Roper-Hall classification and its proposed modification.

Most important of all, the proposed classification is purely theoretical and has not been validated. The Dua, King, and Joseph classification is based on several years of clinical experience of managing burns including more than 67 patients. It is simple and easy to use (clock hours of limbus involvement and percentage of conjunctival involvement), flexible, and allows for all combinations of different extents of involvement of the two structures. It is validated as a prognostic indicator and allows for accurate comparison of cases. The proposed new classification/modification fails on all these counts.

H S Dua
Division of Ophthalmology and Visual Sciences, B Floor, Eye ENT Centre, University Hospital, Queens Medical Centre, Derby Road, Nottingham NG7 2UH; UK; harmsnder.dua@nottingham.ac.uk
doi: 10.1136/bjo.2004.046797
Accepted 23 March 2004

Further communications regarding this subject can be found at eLetters on the BJO website (www.bjophthalmol.com).

References

BOOK REVIEW

Complications in Ophthalmic Plastic Surgery

There is no doubt that complications in surgery are an inevitable fact. Nevertheless, the unforeseen surgical outcomes always play a fundamental part in the self-improving process. Certainly, the experience provides the safest way, for both the patient and the surgeon, to prevent harm and smooth the final result.

This book represents one of the most serious, and not very common, works focusing on the complications in ophthalmic plastic surgery. It is a considerably well-organised book, which apparently requires some basic knowledge of oculoplastics and facial aesthetic surgery. The format is based on three distinguished parts: cosmetic surgery, ptosis, and lower eyelid malposition. A very competent number of contributors cover the topics of their specific interest. In the first part the authors are dealing with the blepharoplasties, the laser resurfacing, and the forehead lift. The ptosis chapter is referred to the most common ptosis techniques but brow suspension is remarkably absent. The third part, although it is entitled “Lower eyelid malposition,” includes and some unrelated, though welcomed topics, like DCR, enucleation, and orbital fractures.

The necessity of the communication between the surgeon and the patient is vigorously emphasised and didactically analysed in every single chapter. Deep understanding of the patient’s expectations as well as detailed information about the pragmatic results is obtained throughout the chapters of the book. There is quite a sufficient reference to preoperative evaluation of the patient regarding measurements, anaesthesia, and surgical preparation.

Although the covered operations are extensively described, a countable number of other surgical techniques, and their possible complications, are not mentioned. The latter is probably related to the editor’s orientation to aesthetic oculoplastic surgery.

The anatomical and pathophysiological mechanisms of the most common complications are thoroughly explained. At the same time, the authors give many enlightening tips, based on their broad experience, for preventing the problems, and meticulously describe the management of the intraoperative and postoperative complications. The number of the illustrations do not adequately correspond to the addressed complications and the quality of the pictures varies, depending on the author’s collection. Additionally, the shortage of references in some of the most interesting chapters (ptosis, enucleation) should certainly not be overlooked, for the magnitude of such a book.

Every attempt to give precious advice about the frustrating and unavoidable surgical complications is always warmly welcomed. Brian Brazzo’s book is predominantly a useful guide to the understanding, prevention, and management of the commonest problems in oculoplastic surgery. Despite the expected problems of every first edition this generally represents a meticulous work on specific issues and thus is recommended for the ophthalmic surgeon and especially for surgeons who are chiefly interested in oculoplastics and cosmetic surgery.

N Chalvatzi
Bristol Eye Hospital, Lower Maudlin Street, Bristol BS1 2LX, UK; nikocha@hotmail.com

CORRECTION

In the letter titled “Sequential treatment of central retinal vein occlusion with intravitreal tissue plasminogen activator and intravitreal triamcinolone (Br J Ophthalmol 2004;88:1100-1101) the authors were listed incorrectly. The correct listing is as follows: J M Lahey, J J Kearney, M C Cheung. The journal apologises for this error.

It has come to our attention that, owing to a production error, the letter by N Islam, K Mireskandari, and G E Rose has been published twice, in the June issue (Br J Ophthalmol 2004;88:833-834) and the August issue (Br J Ophthalmol 2004;88:1092-1093). The initial publication in the June issue should be taken as the article of record. We apologise to the authors and readers for any confusion this accidental duplicate publication may have caused.

NOTICES

Childhood cataract

The latest issue of Community Eye Health (No 50) deals with the manitude, management, economics and impact of childhood cataract. For further information please contact: Journal of Community Eye Health, International Resource Centre, International Centre for Eye Health, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT; UK (tel: +44 (0)20 7612 7964; email: Anita.Shah@lshtm.ac.uk; online edition: www.jceh.co.uk). Annual subscription (4 issues) UK £28/US$45. Free to developing country applicants.

Ophthalmic Anesthesia Society

The 18th annual meeting of the Ophthalmic Anesthesia Society will be held on 1–3 October 2004 in Chicago, USA. For further details: Ophthalmic Anesthesia Society (OAS), 793-A Foothill Blvd, PMB #119, San Luis Obispo, CA 93405, USA (tel: 001 805 534 0300; fax: 001 805 534 9030; email: info@eyeanaesthesia.org; website: www.eyeanaesthesia.org).

4th International Congress on Autoimmunity

The 4th International Congress on Autoimmunity will take place 3–7 November 2004 in Budapest, Hungary. Further details: Kenes International Global Congress Organisers and Association Management Services, 17 Rue du Cendrier, PO Box 1726, CH-1211 Geneva 1, Switzerland (tel: +41 22 908 0488; fax: +41 22 732 2850; email: autoim04@kenes.com; website: www.kenes.com/autoim2004).