Orbital varices and orbital wall defects

Orbital varices are a vascular hamartoma typified by a plexus of low pressure, low flow, thin walled and distensible vessels that intermingle with the normal orbital vessels.\(^1\) If freely communicating with the orbital circulation, engorgement of varices can occur by increasing venous pressure through the Valsalva manoeuvre,\(^5\) bending posture,\(^6\) coughing or straining and these, in turn, lead to the clinical characteristics of variable proptosis, intermittent pain, and orbital haemorrhage.\(^7\,8\) Observation is usually warranted for small lesions, but surgical intervention may be necessary in advanced cases: indications for surgical intervention include non-resolving episodes of thrombosis, severe disfiguring proptosis or displacement of the globe, and optic nerve compression.\(^1\,3\) Surgery can be extremely difficult, as varices are very friable and intimately intermixed with normal orbital structures; there is also a significant risk of visual loss as a result of haemorrhage or optic nerve damage, the latter being generally caused by vascular compromise.\(^9\,10\) The association of orbital venous anomalies with orbital wall defects provides a further source of surgical difficulty because of the close proximity of intracranial structures and the continuity with extraorbital or intracranial venous anomalies.

Case series

The orbital database, at Moorfields Eye Hospital, was used to identify patients with a clinical diagnosis of low pressure orbital varices and their orbital imaging (computed tomography and/or magnetic resonance image) was reviewed. Images were examined for evidence of orbital expansion, osseous defects of the orbit, nose or sinuses, and anomalies of the frontal lobes. Patients who had either orbital or intracranial surgery before the date of imaging were excluded from the investigation.

The clinical diagnosis of orbital varices was identified in 310 patients, and imaging was available for 223 patients (72%). Six patients with previous orbital or intracranial surgery were excluded and nine cases (4%) had associated anomalies of the neighbouring orbital walls (table 1).

Four cases (patients 1–4) were associated with “pitting” of the orbital wall secondary to orbital varices (fig 1A). Another three cases (patients 6–8) were associated with enlarged superior orbital fissure and two cases (patients 5 and 9) with multiple orbital roof “defects” (fig 1B). Orbital varices were present up to the dural space in two cases (patients 4 and 5), and involved the frontal lobe parenchyma in one case (patient 6; fig 1C, D).
Table 1 Characteristics of nine patients with orbital wall defects in association with orbital varices

<table>
<thead>
<tr>
<th>No</th>
<th>Side</th>
<th>Age (years) at referral</th>
<th>Sex</th>
<th>Main location of orbital varix</th>
<th>Expansion of orbit</th>
<th>Absent walls</th>
<th>Ethmoid</th>
<th>Cribriform</th>
<th>Frontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left</td>
<td>6</td>
<td>M</td>
<td>Medial and extensive superomedial</td>
<td>Present</td>
<td>Small roof defect</td>
<td>Pitted bone and smaller ethmoid</td>
<td>L-low R-normal</td>
<td>Dips low at cribriform</td>
</tr>
<tr>
<td>2</td>
<td>Right</td>
<td>21</td>
<td>F</td>
<td>Extraconal–medial</td>
<td>Present</td>
<td>Tiny thin area SNQ</td>
<td>Pitted bone and smaller ethmoid</td>
<td>R-low L-mild</td>
<td>Low frontal lobe over cribriform</td>
</tr>
<tr>
<td>3</td>
<td>Left</td>
<td>62</td>
<td>M</td>
<td>Superomedial</td>
<td>Present</td>
<td>Pitted roof and small defects of veins</td>
<td>Compressed</td>
<td>Normal</td>
<td>Varices of frontal lobe</td>
</tr>
<tr>
<td>4</td>
<td>Right</td>
<td>58</td>
<td>F</td>
<td>Panorbit intraconal and extracranal</td>
<td>Present</td>
<td>Post superior wall and pitted bone</td>
<td>Normal</td>
<td>Normal</td>
<td>Varices up to dural space</td>
</tr>
<tr>
<td>5</td>
<td>Right</td>
<td>47</td>
<td>M</td>
<td>Panorbit intraconal</td>
<td>Absent</td>
<td>Posterior orbital roof</td>
<td>Normal</td>
<td>Normal</td>
<td>Varices up to dural space</td>
</tr>
<tr>
<td>6</td>
<td>Right</td>
<td>14</td>
<td>F</td>
<td>Posterior intraconal, superior extracranal</td>
<td>Present</td>
<td>Enlarged SOF</td>
<td>Normal</td>
<td>Normal</td>
<td>Varices into frontal lobe</td>
</tr>
<tr>
<td>7</td>
<td>Left</td>
<td>40</td>
<td>F</td>
<td>Posterior intracranal</td>
<td>Present</td>
<td>Enlarged SOF and small lateral wall</td>
<td>Slightly smaller</td>
<td>Unknown</td>
<td>Normal</td>
</tr>
<tr>
<td>8</td>
<td>Left</td>
<td>37</td>
<td>F</td>
<td>Posterior intracranal</td>
<td>Present</td>
<td>Very enlarged SOF, patchy SNQ defects</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>9</td>
<td>Left</td>
<td>66</td>
<td>M</td>
<td>Extracranal–superior (large)</td>
<td>Present</td>
<td>Posterior orbital roof</td>
<td>Small</td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

SNQ = superonasal quadrant; SOF = superior orbital fissure.

One patient (case 2) had thinning of the superonasal quadrant of the orbital wall, nasal orbital wall pitting, and a low ipsilateral cribiform plate, when first seen at age 21 in 1981 (fig 1E, F). On repeat imaging 20 years later (2001), this patient was noted to have developed proptosis, a defect in the superonasal wall of the orbit, and a new mid-line nasal encephalocoele (fig 1J, L).

Comment
Fine cut (5 mm) orbital CT scans easily delineate varices and diagnostic phlebitis, which occur from thrombus formation, and provide an excellent natural contrast between brain, bone, and varix. The typical findings for varices include an ill defined multiloculated mass, with some patchy contrast enhancement, in communication with the neighbouring orbital circulation; diffuse expansion of the orbital walls is well recognized in some cases, especially in childhood lesions.

Several factors may have biased the study population: many are symptomatic patients, having been referred from other ophthalmic units in consideration for surgical intervention. The apparent incidence of orbital wall defects (4%) in our series may, therefore, be a slight overestimate. In a minority of patients, orbital varices may be associated with orbital wall defects, and such defects may, eventually, lead to an encephalocoele formation. Clinicians should be aware of these, apparently unreported, associations before embarking on surgical intervention for orbital varices.

References

Previous biopsies had revealed conjunctival dysplasia. On examination, the tumour of the ocular and tarsal conjunctiva of the lower lid covered the entire corneal surface (fig 1A). Patient 2
A 90 year old patient presented with a 2 year history of an extensive conjunctival papillomatous tumour of the left eye covering three quarters of the cornea with visual acuity of light perception. A full thickness biopsy was performed.

Both patients underwent orbital exten
tion including removal of the eyelids. Histopathologically the focal invasive, completely removed tumour of patient 1 grew in a papillomatous manner. The tumour cells of the conjunctival neoplasm showed strongly enlarged nuclei with prominent nucleoli, and formed cohesive units with intercellular bridges (fig 1B).

The exophytic tumour of patient 2 was predominantly intraepithelial with foci of subepithelial invasion. Focal tumour anaplasia was observed in the otherwise moderately differentiated tumour with squamous cell differentiation.

Immunostaining of both specimens revealed strong p53 (monoclonal mouse-anti-human p53-protein DO-7, Dako) overexpression (>26% of epithelium cells) and low expression of p21 (<6% of epithelium cells) of the invasive region of the tumour indicating an inactivating p53 mutation (fig 1C). While in patient 1 expression for p53 was found in all epithelial layers, in patient 2 it was expressed suprabasally. In contrast, both p53 and p21 showed moderate reactivity in the dysplastic region up to the middle layer of the tumour (fig 1D). In the apical layer epithelium cells were occasionally p21 positive.

Immunostaining for HPV (HPV screening antibody, Virofem Diagnostica, Germany) was positive in patient 1.

Comment
The high recurrence rate of OSSN of 9–64% after resection seems to depend on the histopathological grade and status of surgical margins. HPV-16 and HPV-18 are considered...
SCC but positive staining in dysplasia. Karcioglu and associates found no expression for p53 in dysplastic conjunctiva of the same specimen (original magnification, ×2.5). p53 overexpression indicating an inactivating p53 mutation (original magnification, ×10). p53, showing moderate expression predominantly in the suprabasal layers in dysplastic conjunctiva of the same specimen (original magnification, ×10).

Figure 1 Patient 1. (A) Extensive papillomatous tumour, subtotally covering the corneal surface of the left eye. Nodular thickening of the lower eyelid indicates eyelid involvement. (B) Histological appearance. Papillomatous pattern of the large epithelial lesion with focal invasion above the cornea. Subepithelially, inflammatory cells and some dilated vessels (haematoxylin and eosin, original magnification, ×2.5). p53, showing strong diffuse reactivity in invasive region indicating an inactivating p53 mutation (original magnification, ×10). (D) p53, showing moderate expression predominantly in the suprabasal layers in dysplastic conjunctiva of the same specimen (original magnification, ×10).

R Guthoff, W E Lieb Department of Ophthalmology, Julius Maximilians University Würzburg, Germany
P Ströbel, A Zettl Institute of Pathology, Julius Maximilians University Würzburg, Germany
Correspondence to: Dr R Guthoff, Universitäts-Augenklinik, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany; r_guthoff@yahoo.de
doi: 10.1136/bjo.2003.038588
Accepted for publication 7 December 2003

References

Familial pseudotumoral sclerchoroidal calcification associated with chondrocalcinosis

Sclerchoroidal calcification is the deposition of calcium at the level of the sclera and choroid. Two entities have been described: metastatic calcifications resulting from deposition of calcium in normal tissues caused by phosphocalci c metabolism abnormality such as primary and secondary hyperparathyroidism, pseudohyoparathyroidism, hypervitaminose D, vitamin D intoxication, hypophosphataemia, sarcoidosis, Barter syndrome, and Giselman syndrome; and dystrophic calcifications caused by secondary deposition of calcium in abnormal tissues despite normal serum levels of calcium and phosphate.

Sclerchoroidal calcifications can also be idiopathic. We describe the first case of hereditary form of sclerchoroidal calcifications associated with familial articular chondrocalcinosis.

Case report

A 69 year old man was admitted to the department of ophthalmology in November 1999 with gradual deterioration of vision in both eyes. He had a medical history of articular chondrocalcinosis. His father, brother, and son were treated for the same disease.

On examination, best corrected visual acuity was 20/120 in the right eye and finger counting in the left eye. Slit lamp examination and ocular tension were normal. The funduscopy revealed multiple bilateral pseudotumoral white choroidal masses in both eyes (fig 1). Ultrasound examination of the eyes confirmed the calcific nature of the lesions.

On fluorescein angiography in March 1979 the pseudotumoral lesions were smaller and did not involve the macular area in left eye (fig 1, left).

He had an extensive metabolic evaluation in the Broussais department of physiology that was normal. The systemic diagnosis was familial articular chondrocalcinosis.

We decided to examine the whole family to search for ophthalmic abnormalities linked with familial chondrocalcinosis.

The 74 year old brother and the 40 year old son also suffered from chronic articular chondrocalcinosis. Their best visual acuity was 20/20 in both eyes.
The brother's funduscopy revealed multiple bilateral, extrafoveal pseudotumoral white choroidal masses (fig 2, top). The son's funduscopy revealed plaque-like and only slightly elevated lesions seen in the mid-periphery (fig 2, bottom). Ultrasonograms confirmed the calcific nature of these lesions.

Comment

In 1997, Shields et al described a case of sclerochoroidal calcifications in a normocalcaemic patient who had chondrocalcinosis. We first describe a familial case of sclerochoroidal calcifications associated with calcium pyrophosphate dihydrate (CPPD). In this family, autosomal dominant inheritance is highly likely because there are affected individuals in each generation, there is male to male transmission, and every affected member has an affected parent. Inheritance in sclerochoroidal calcifications has never been described; however, hereditary forms of chondrocalcinosis have already been described.

In our report, a patient had a 24 year follow up showing a progressive involvement of the macular area, suggesting a growth of the calcifications. Two types of calcifications have been described previously, the plaque-like and the pseudotumoral type.

To our knowledge, it has never been determined if the plaque-like lesions evolve into tumour-like lesions. In 1992, Schachat and associates reported 10 cases with follow up ranging from 7 months to 10 years, for whom no change in the lesion was seen. This is the first observation with 24 years of follow up suggesting a possible evolution of plaque-like lesions to pseudotumoral lesions.

We suggest that every patient affected by familial chondrocalcinosis should have an ophthalmic examination to detect sclerochoroidal calcifications. These lesions seem to be evolving in time with possible involvement of the macula. Choroidal neovascularisation is also a vision threatening complication of sclerochoroidal calcifications. Our case suggests the need to perform ophthalmological examination in patients and family members of patients affected by chondrocalcinosis.

References

Whole body PET/CT imaging for detection of metastatic choroidal melanoma

Metastatic choroidal melanoma typically presents in the liver. Therefore, liver enzyme assays are the most common haematological evaluation performed after treatment.

In 1985, The Collaborative Ocular Melanoma Study required periodic medical evaluations including a physical examination, liver functions studies, a complete blood count, and a chest x ray. If liver enzymes exceeded 1.5 times normal, computed tomography (CT) of the abdomen was required. If low attenuation hepatic nodules suggested metastatic disease, fine needle aspiration biopsy of the liver tumours provided cytopathological confirmation.

Positron emission tomography (PET) is a molecular imaging technique that uses radiolabelled molecules to image metabolic activity in vivo. When whole body PET was combined with computed radiographic tomography (CT), PET/CT put anatomy and function on the same page making practical a new era of physiological imaging.

This study examines the ability of positron emission tomography combined with computed tomography (PET/CT) to allow for detection of previously occult metastatic melanoma.

Case report

A 77 year old woman presented with a 15.4 x 15 mm width and 13.2 mm high collar button shaped choroidal melanoma with a large secondary retinal detachment in her right eye. Her preoperative medical evaluation

Figure 1. Fluorescein angiography of the 69 year old patient in 1979 (left) and 2000 (right) showing evolution of the sclerochoroidal calcifications with time.

Figure 2. Funduscopy of the patient's brother (top) and son (bottom) revealing tumour-like and plaque-like calcifications.
including CT imaging of the abdomen) proved negative. She was treated by enucleation.

Two years later a follow up medical evaluation revealed elevated liver function studies (table 1) and a chest x ray showed a pleural effusion. CT of the abdomen with contrast revealed multiple low attenuation hepatic foci consistent with metastatic melanoma.

A PET/CT was requested. Fifty minutes after intravenous administration of 15.2 mCi of fluordeoxyglucose, whole body PET/CT imaging revealed enlarged para-aortic lymph nodes and a subcutaneous nodule in the abdominal wall (fig 1). The CT portion of the PET/CT also revealed two 3 mm nodules in the upper lobe of the right lung (too small to be visualised by PET imaging). PET imaging was able to reveal multiple bony metastases that were not seen on the CT portion (fig 1).

Both CT and PET showed a large liver metastasis, but CT was better at defining tumour size. Since it is a physiological assay, PET also demonstrated the metabolic activity of the metastatic tumours (fig 1).

Comment

In this case, whole body PET/CT was found to be capable of uncovering metastases not seen with abdominal CT alone. This led us away from considering regional perfusion of the liver, hepatic resection, and towards systemic treatment. Therefore, when PET/CT identifies extrathoracic involvement, it can have a significant impact on the management of patients with metastatic choroidal melanoma.

PET/CT could also be used for initial staging. Early detection of occult metastases

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Patient characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Examination</td>
</tr>
<tr>
<td>General</td>
<td>Icterus</td>
</tr>
<tr>
<td>Subcutaneous tissue</td>
<td>2 nodules in the anterior abdominal wall</td>
</tr>
<tr>
<td>Nodes</td>
<td>None</td>
</tr>
<tr>
<td>Lungs</td>
<td>No abnormalities noted</td>
</tr>
<tr>
<td>Liver</td>
<td>Enlarged</td>
</tr>
<tr>
<td>Kidney</td>
<td>8 mm cyst midpole and 2 cm cyst upper pole of left kidney</td>
</tr>
<tr>
<td>Bone</td>
<td>No lesions noted</td>
</tr>
</tbody>
</table>

Figure 1 On the left, the CT demonstrates the anatomy; on the right the PET shows areas of hypermetabolism (glucose uptake); in the middle the two images are fused. PET/CT revealed enlarged para-aortic lymph nodes and a subcutaneous nodule in the anterior abdominal wall. The PET imaging portion of the PET/CT was able to reveal multiple bony metastases that were not seen on the CT portion of the examination. Both CT and PET showed a large liver metastasis.
offers the potential to avoid ineffective and expensive enucleations, radioactive plaques, proton irradiation, eye wall resections, or laser treatment. Local therapies would be abandoned in favour of systemic treatments.

Another issue related to PET/CT is cost. Up to five times more than CT of the abdomen, PET/CT is only covered (Medicare) for melanoma staging/restaging when the stage of the cancer remains in doubt after completion of conventional imaging (or if the clinical management would differ depending on the PET findings). Since PET/CT revealed extrahepatic foci in this case, it changed our clinical approach. There is little doubt about the improved ability of PET/CT to detect lesions; the real issue is cost and if the results will change outcomes.

This study goes one step further than CT, MRI, or PET alone. By combining whole body PET and CT, this examination joins anatomy and function in one examination (fig 1). The relative efficacy of PET/CT to locate metastases should be evaluated within the framework of a prospective study.

P T Finger, M Kurli
The New York Eye Cancer Center, New York, USA

P T Finger, M Kurli, P Wesley, L Tena
The New York Eye and Ear Infirmary, New York, USA

P T Finger, L Tena
St Vincent’s Comprehensive Cancer Center, New York, USA

P T Finger, K R Kerr
Beth Israel Medical Center

P T Finger, A Pavlick
New York University School of Medicine, New York, USA

Correspondence to: Paul T Finger, MD, The New York Eye Cancer Center, 115 East 61st Street, New York, NY 10021, USA; pfinger@eyecancer.com
doi: 10.1136/bjo.2003.039289

Accepted for publication 1 January 2004

This work was supported by The EyeCare Foundation and Research to Prevent Blindness, New York, USA.

References
unchanged in 10 eyes (71%), and worsened by >0.2 logMAR in three eyes (21%). In these AMD eyes, the median decimal VA was 0.30 before treatment (range 0.08–1.0) and 0.20 at 3 months after treatment (range 0.05–0.7). Complications such as intraocular pressure elevation, infection, or cataract progression were not noted in any eyes.

Comment

This interventional case series shows that trans-Tenon’s retrobulbar infusion of triamcinolone acetonide resulted in lesion fibrosis in the majority of eyes with small CNV, efficacy being best for idiopathic CNV or CNV related to PIC. The mechanism of action of triamcinolone acetonide in inhibiting CNV growth probably involves several pathways. The effect of corticosteroids in inhibiting inflammatory cells that participate in the neovascular response probably has a prominent role. Triamcinolone acetonide has specifically been shown to inhibit basic fibroblast growth factor induced migration and tube formation of choroidal microvascular endothelial cells. Furthermore, triamcinolone acetonide inhibits choroidal neovascularisation induced by laser trauma in a rat model. Finally, triamcinolone acetonide may decrease vascular permeability, thereby decreasing influx of serum proteins that may contribute to an angiogenic microenvironment. Longer follow up and greater numbers of cases in a randomised clinical trial are needed to confirm these results.

A A Okada, T Wakabayashi, E Kojima, Y Asano, T Hida

Kyorin Eye Center, Kyorin University School of Medicine, 6–20–2 Shinkawa, Mitaka, Tokyo, Japan

Correspondence to: A A Okada, MD, Department of Ophthalmology, Kyorin University School of Medicine, 6–20–2, Shinkawa, Mitaka, Tokyo 181–8611 Japan; aokada@po.iijnet.or.jp
doi: 10.1136/bjo.2003.039719

Accepted for publication 6 January 2004

References

Table 1 Anomalies and cancers reported in offspring of IVF

<table>
<thead>
<tr>
<th>Condition</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroectodermal tumours</td>
<td>White et al.²⁴</td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>Kramer et al.²⁴</td>
</tr>
<tr>
<td>Hepatoblastoma</td>
<td>Melamed et al.²⁴</td>
</tr>
<tr>
<td>Clear cell kidney carcinoma</td>
<td>Toren et al.²⁴</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>Kobayashi et al.²⁴</td>
</tr>
<tr>
<td>Transposition of the great arteries</td>
<td>Berg et al.²⁴</td>
</tr>
<tr>
<td>Neural tube defects</td>
<td>Lancaster²⁴</td>
</tr>
</tbody>
</table>

Table 2 Retinoblastoma in children born through IVF

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sex and age at diagnosis</th>
<th>Eye</th>
<th>Cause of subfertility</th>
<th>DNA 13q14 analysis</th>
<th>Assisted reproductive technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteby et al.²⁵</td>
<td>M, 8.5</td>
<td>Both</td>
<td>Unexplained</td>
<td>Unexplained</td>
<td>Exon 14 altered</td>
</tr>
<tr>
<td>Mall et al.²⁵</td>
<td>M, 15</td>
<td>Left</td>
<td>Maternal cause</td>
<td>Unexplained</td>
<td>Normal IVF</td>
</tr>
<tr>
<td>Mall et al.²⁵</td>
<td>M, 24</td>
<td>Right</td>
<td>Unexplained</td>
<td>Unexplained</td>
<td>Normal IVF</td>
</tr>
<tr>
<td>Mall et al.²⁵</td>
<td>M, 8.5</td>
<td>Bath</td>
<td>Unexplained</td>
<td>Unexplained</td>
<td>Normal IVF</td>
</tr>
<tr>
<td>Mall et al.²⁵</td>
<td>F, 32</td>
<td>Left</td>
<td>Paternal cause</td>
<td>Normal</td>
<td>Normal IVF</td>
</tr>
<tr>
<td>This report, ²⁵</td>
<td>F, 32</td>
<td>Right</td>
<td>Maternal cause</td>
<td>Normal</td>
<td>Normal IVF</td>
</tr>
<tr>
<td>Neves et al.²⁵</td>
<td>F, 32</td>
<td>Left</td>
<td>Paternal cause</td>
<td>Normal</td>
<td>Normal IVF</td>
</tr>
<tr>
<td>Neves et al.²⁵</td>
<td>M, 15</td>
<td>Right</td>
<td>Unexplained</td>
<td>Normal</td>
<td>Normal IVF</td>
</tr>
</tbody>
</table>

N.R., not reported; A.I., artificial insemination; ICSI, intracytoplasmic sperm injection.

Current literature on retinoblastoma in children born through IVF includes three case reports that describe a total of six cases of retinoblastoma in these children. The characteristics of these patients and the patient discussed in this report are listed below.
Retinoblastoma is the most common intraocular cancer of childhood and affects approximately 300 children each year in the United States. Retinoblastoma is a manifestation of a de novo deletion or mutation of the q14 band of chromosome 13, occurring as a "second hit" during embryogenesis or the result of two hit deletions in retinal cells. In that it could be the result of chromosomal breakage and deletions in IVF born children, surveillance of retinoblastoma incidence in children born through IVF is warranted. 3, 4

With the advent of assisted reproductive technology (ART) in 1977, American couples have increasingly turned to such treatments to overcome fertility problems. Nationwide, 99,629 procedures were performed in 2000 by ART. In that year, fertility treatments in which the egg and sperm are handled in the laboratory resulted in 25,228 live births and 35,025 infants. This report expands information on geography and determinants of both ART success and multiple birth risks (beyond what appears in the 2000 Assisted Reproductive Technology Success Rates). Therefore, it seems reasonable to maintain a registry of post-IVF children, to support large epidemiological studies with long term follow up, and prospective randomised studies of infertile couples in order to determine if there is a relation between IVF and cancers such as retinoblastoma.

I Lee, P T Finger
The New York Eye Cancer Center, New York City, NY, USA

References

Angle closure glaucoma after laser photocoagulation for retinopathy of prematurity

Infantile angle closure glaucoma (ACG) is a rare consequence of retinopathy of prematurity (ROP) and usually occurs a few years after laser treatment for ROP. 4, 5 A Medline search for ACG following laser photocoagulation extracted only one case. In the case, ACG occurred in 2 weeks after laser photocoagulation and although occurrence of iris bombe in both eyes was described, the mechanism for the ACG was not fully clarified. 6 We present a case of bilateral ACG that occurred within a several weeks after the laser photocoagulation for ROP. We shall discuss the importance of ultrasound biomicroscopy (UBM) in the diagnosis.

Case report

A baby girl, born at 25 weeks gestation weighing 796 g, was diagnosed with stage 2 plus, zone 2 ROP bilaterally at 33 weeks. Diode laser photocoagulation, 986 applications right eye and 629 left eye, with 200–240 mW, 0.4 second duration, was performed by a paediatric ophthalmologist. On the following day, severe hyphaema was observed bilaterally but there was no evidence of choroidal detachment by B-mode ultrasound sonography. Topical atropine and corticosteroid were started and she was treated with topical timolol and pilocarpine and topical prednisolone. Angle closure glaucoma (ACG) was not fully clarified. 6

We present a case of bilateral ACG that occurred within a several weeks after the laser photocoagulation for ROP. We shall discuss the importance of ultrasound biomicroscopy (UBM) in the diagnosis.
of the lens was also attached to the corneal endothelium (fig 2). Choroidal detachment and a retrolental mass were not observed by B-mode ultrasound sonography (fig 2).

Peripheral iridectomy was performed bilaterally (fig 1). Postoperatively, her peripheral anterior chamber deepened bilaterally although the lens in the right eye was still adherent to the corneal endothelium. Indirect ophthalmoscopy revealed normal cup to disc ratio. The IOP fell to normal levels bilaterally.

Comment

Shallow anterior chambers in ROP patients are known to be caused by various factors—for example, choroidal detachment after excessive photocoagulation, development of retrolental mass, or relative increment in lens thickness, but usually the cause of shallow anterior chamber cannot be determined. In our case, the development of hyphaema after photocoagulation induced posterior synechia, and the iris bombe followed. The displacement of the anterior chamber structures was induced by the forward movement of the iris lens diaphragm in the right eye, and the ocular fragility in premature baby may explain this deformity.

Vitreous haemorrhage is known to occur in 7.9% of ROP cases after photocoagulation. In our case, there is a possibility that the hyphaema was derived from vitreous haemorrhage. Another possibility is an accidental photocoagulation of persistent pupillary membranes and/or iridocorneal vessels caused the hyphaema. We are not aware of such morphological changes after photocoagulation for ROP.

ACG that occurs immediately after retinal photocoagulation in ROP patients is rare, but is still an important complication. In ROP patients, the lens and its ligament are weak, and therefore not only ACG but also lens displacement occurred. It is important that we be aware of the possible development of ACG following retinal photocoagulation for ROP.

Sequential treatment of central retinal vein occlusion with intravitreal tissue plasminogen activator and intravitreal triamcinolone

Treatment for central retinal vein occlusion (CRVO) remains disappointing despite recently proposed intraocular surgical techniques. We previously introduced the use of intravitreal tissue plasminogen activator (TPA) for acute central retinal vein occlusion in 1999. Numerous investigators have confirmed its safety and suggested that it may have a beneficial role in the treatment of acute central retinal vein occlusion. Although some studies in rabbits suggest the rabbit retina is not permeable to TPA,
Six weeks after the intravitreal triamcinolone, the FA returned to normal and OCT showed decreased foveal thickness from 331 µm to 291 µm. The patient reported a significant improvement in vision with decreased metamorphopsia. Vision was 20/25 with no late leakage on the fluorescein angiogram (fig 2B).

Comment
To our knowledge, this represents the first published case of CRVO treated sequentially with intravitreal TPA for the acute phase and intravitreal triamcinolone for the chronic phase. TPA is a drug that must be used early in the course of thrombus formation to be effective. We do not recommend its use for patients with chronic symptoms. Intravitreal steroids appear to decrease the blood-retinal barrier breakdown and macular oedema, but recurrent oedema may occur since the steroids do not appear to affect the thrombus itself.

Case report
A 59 year old obese, hypertensive flight instructor presented with a sudden decrease in vision for 7 days in the right eye. Vision was 20/400 right eye and 20/20 left eye. The patient was diagnosed with an acute CRVO in the right eye (fig 1A). The left eye was normal. After being advised of the risks and benefits, the patient elected to undergo intravitreal injection of TPA (75 µg). Thirteen days later, the patient noted marked improvement in vision with 20/60 vision. Thirty four days after the injection, the patient's vision was 20/30 (fig 1B).

Six months after intravitreal TPA injection, the FA showed decreased foveal thickness from 331 µm to 311 µm with mild intraretinal oedema. After being advised of the risks and the benefits, the patient then underwent injection of intravitreal triamcinolone (4 mg).

Intravitreal TPA injection. (B) Late frames show resolution of macular oedema 6 weeks after intravitreal triamcinolone.

Figure 2 (A) Fluorescein angiogram reveals persistent macular oedema and hyperfluorescence 6 months after intravitreal TPA injection. (B) Late frames show resolution of macular oedema 6 weeks after intravitreal triamcinolone.

Severe post-laser suprachoroidal haemorrhaging in a diabetic patient receiving anticoagulants
Although the aetiology is not well understood, expulsive suprachoroidal haemorrhaging (ESH) is the most severe complication associated with intraocular surgery. Anticoagulants are considered a risk factor for spontaneous suprachoroidal haemorrhaging in cases with high myopia, age related macular degeneration, and diabetic retinopathy.18 However, ESH post photocoagulation is extremely rare regardless of anticoagulant therapy. We have experienced a severe case of post-laser ESH correlated with anticoagulant therapy, which resulted in irreversible visual disturbance.

Case report
A 70 year old woman was diagnosed with pre-proliferative diabetic retinopathy based on fluorescein angiographic examinations. Two months before diagnosis, she had right eye cataract surgery. During the past 6 years, the patient received warfarin (4 mg/day) and aspirin (81 mg/day) because of atrial fibrillation after myocardial infarction. Laser photocoagulation was performed in her right eye with a Nidek MC-7000, yellow-green laser. Operating conditions were 200–280 burns per session with a spot size 200 µm, exposure 0.2 seconds, power 100–120 mW using a Quadratic contact lens (Volk, Tokyo, Japan). Treatment was separated into three partitions with a minimum 2 week interval between sessions. Three days after final photocoagulation, the patient had a sudden visual loss to hand movements. In slit lamp examinations, the retina seemed to be attached to the posterior surface of the implanted intraocular lens. Severe choroidal detachment was found by fundus examination (fig 1). The B-mode ultrasonography showed massive haemorrhaging in the choroidal space (fig 2).

In systemic examinations, multiple purple spots were observed in both her arms. Microhaematuria was also noted.

Blood examination revealed blood sugar 167 mg/dl; platelet number 179 000 ×10³/l; PT% 19% (control 70–120); PTT 28.7 seconds; PT INR 4.72 (control 1); APTT 80.2 seconds (control 24.0–38.0); and bleeding time 5 minutes. Although surgery was planned to proceed as soon as the anticoagulant was washed out, her right eye lost all light perception before treatment.

Comment
We have described a case of ESH after laser photocoagulation in a patient receiving anti-coagulant therapy. Laser photocoagulation is known as an effective treatment for various ocular diseases and is widely used, non-incision surgical procedure. However, a number of complications have been reported, with some citing an irreversible visual disturbance.19 On the other hand, anticoagulant therapy is prevalent after cardiac/brain infarctions, which necessitate long-term coagulation system management. In the present case, the PT INR was extremely prolonged (a respected value of 2–3 is
appropriate for post-cardiac infarction). Presumably, choroidal microbleeding initiated by photoocoagulation persisted because of an overly suppressed coagulation system; blood pooled in the choroidal space, because of an overly suppressed coagulation initiated by photocoagulation persisted. Presumably, choroidal microbleeding appropriate for post-cardiac infarction. We believe that our method using a 23 gauge blunt, curved, long cannula (the one we used was No HS-2764 by Handaya Co, Ltd, Tokyo, Japan) assures accurate placement into the target space, thereby increasing therapeutic efficacy and obviating the need for globe invasive procedures such as intravitreal injection of corticosteroids, corticosteroid intravitreal implants, and/or therapeutic vitrectomy.

However, we are in agreement with Vedantham, in that ultimately corticosteroids placed outside of the eye may be the watch for the efficacy that may be obtained by corticosteroid placed inside the eye. Yet we have found such a high efficacy rate for the transfusion's retrobulbar infusion of triamcinolone in uveitis that we can conceive of no reason why this treatment should not be tried before such intravitreal injections that carry risks of severe complications are considered. For example, as also pointed out by Vedantham, the risks of intravitreal corticosteroid injections even include development of a rare form of mycobacterial endophthalmitis. Therefore, the risk to the eye of intravitreal procedures, especially when involving corticosteroid administration, cannot be taken lightly. Furthermore, we believe that the reason why sub-Tenon's injections of corticosteroids have not become popular among retina specialists who for example treat diabetic macular oedema, is more likely related to the lower efficacy rate when using needles as opposed to the technique using an infusion cannula that we advocate. Lastly, obtaining the infusion cannula seems like a small inconvenience (and an even smaller cost) to the physician compared to the risk of doing intravitreal injections of corticosteroids as a treatment of first choice as advocated by Vedantham. We strongly encourage all uveitis and retina specialists who have up until now been disappointed with the efficacy of their sub-Tenon's corticosteroid injections, to make the effort to obtain an appropriate cannula and revise their technique before jumping to intravitreal procedures.

In reply to the first comment by Dr Mehta, we acknowledge the current WHO guidelines, revised for 2003, that include recommenda-tions for extrapulmonary tuberculosis. However, we would also like to amend Mehta's comment, in that the WHO admits in those guidelines that there are many...
regimens with reported efficacy including a 6 month regimen of rifampicin (with streptomycin also given in the initial phase only) for tuberculous uveitis. Furthermore, the WHO recommendations are for active extraocular tuberculosis that has been diagnosed by specimen examination or strong clinical evidence, and give no recommendations for latent infection. As we have previously reported in a series on intraocular tuberculosis, systemic examination failed to identify a focus of active tuberculosis in the majority of our patients, and we have come to suspect that the uveitis observed may be an immune response to latent tuberculosis antigen sequestered elsewhere. Therefore, the patients we described were given a diagnosis of ‘presumed intraocular tuberculosis,’ that is with uveitis presumed to be related to the Mycobacterium tuberculosis organism. Furthermore, we would like to clarify that in the cases of presumed ocular tuberculosis that received trans-Tenon’s retrobulbar triamcinolone infusion, this treatment was judged to be effective in two of three eyes. Regardless, since the focus of active or latent tuberculosis was never identified in our patients, a two drug regimen of isoniazid and rifampicin was used as a therapeutic trial for antituberculosis therapy. A similar therapeutic trial for ocular tuberculosis, albeit with isoniazid alone, has been previously advocated in Japan by Ishihara and Ohno.

With regard to the second comment, among the 16 patients who were receiving some form of systemic immunosuppressive therapy, we did not notice any difference in outcome when compared to patients who were not on immunosuppressive therapy. In other words, the efficacy of trans-Tenon’s retrobulbar triamcinolone infusion was the same. However, we suspect that the recurrence rate after triamcinolone infusion may be different, and we are currently investigating this possibility.

A A Okada, T Wakabayashi
Kyorin Eye Center, Kyorin University School of Medicine, Tokyo, Japan
Correspondence to: Annabelle A Okada, Kyorin Eye Center, Kyorin University School of Medicine, Tokyo, Japan; aokada@po.iijnet.or.jp
doi: 10.1136/bjo.2003.038851
Accepted for publication 20 November 2003

References

Owls’ eyes move

“Double crossed,” the cover illustration and article by Schwab on the barn owl refers to the alleged immobility of the owl’s eyes. This is a myth which should not be perpetuated in the BJO. The owl’s eyes do in fact move, and while the amount is not large, it is just enough for two papers on the subject. The phrase “nearly immobile” is preferable.

M J Steinbach
Correspondence to: Professor Martin J Steinbach, University of Toronto, Department of Ophthalmology and Vision Sciences, Toronto Western Hospital, 399 Bathurst Street, Toronto M5T 2S8, Canada; mjp@yorku.ca

doi: 10.1136/bjo.2004.042291
Accepted for publication 16 January 2004

References

NOTICES

Low vision care

The latest issue of Community Eye Health (No 49) deals with the problems and management of low vision. For further information please contact: Journal of Community Eye Health, International Resource Centre, International Centre for Eye Health, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK (tel: +44 (0)20 7612 7964; email: Anita.Shah@lshtm.ac.uk; online edition: www.jche.co.uk). Annual subscription (4 issues) UK £28/US$45. Free to developing country applicants.

Elimination of avoidable blindness

The 56th World Health Assembly (WHA) considered the report on the elimination of avoidable blindness (doc. A56/26) and urged Member States to: (1) Commit themselves to supporting the Global Initiative for the Elimination of Avoidable Blindness by setting up a national Vision 2020 plan by 2005; (2) Establish a national coordinating committee for Vision 2020, or a national blindness prevention committee to help implement the plan; (3) Implement the plan by 2007; (4) Include effective monitoring and evaluation of the plan with the aim of showing a reduction in the magnitude of avoidable blindness by 2010; (5) To support the mobilisation of resources for eliminating avoidable blindness. The WHA also urged the Director-General to maintain and strengthen WHO’s collaboration with Member States and the partners of the Global Initiative for the Elimination of Avoidable Blindness as well as aid in the coordination and support of national capability.

4th International Congress on Autoimmunity

The 4th International Congress on Autoimmunity will take place 3–7 November 2004 in Budapest, Hungary. The deadline for the receipt of abstracts is 20 June 2004. Further details: Kenes International Global Congress Organisers and Association Management Services, 17 Rue du Cendrier, PO Box 1726, CH-1211 Geneva 1, Switzerland (tel: +41 22 908 0488; fax: +41 22 732 2850; email: autoim04@kenes.com; website: www.kenes.com/autoim04).

XVI International Congress for Eye Research

Glaucosaemia Silver Jubilee Meeting 2004

The Silver Jubilee Meeting and Dinner for the Glaucosaemia Society will be held on 3 December 2004 at the Royal College of Physicians in Regents Park, London. The meeting will take place between 8.30am and 5pm and the dinner will be held between 6.30pm and 10pm. For further information, please contact: Janet Flowers, Administrator, 29 Quarry Hill, Grays, Essex, RM17 5BT (tel: 01375 383172; e-mail: glauosc@ukiere.freeserve.co.uk).