Echographic features of a case of malignant intraocular medulloepithelioma

Intraocular medulloepithelioma is a rare embryonal neoplasm, usually presenting in the first decade of life as a unilateral, cystic ciliary body mass arising from the non-pigmented ciliary epithelium. Histologically, medulloepithelioma is classified as non-teratoid (a pure proliferation of medullary epithelial cells) or teratoid (containing heteroplastic elements such as hyaline cartilage, skeletal muscle, or neuroglial tissue). Either group can be subclassified as benign or malignant, the latter showing evidence of poor differentiation, increased mitotic activity, and local invasion with or without extracocular extension.

We report the progressive echographic findings in a case of malignant intraocular medulloepithelioma. Echographic examination, by B-scan (10 MHz probe) and high resolution anterior segment echography (20 MHz probe), was performed during two examinations under anaesthesia (EUA), using the 13 system.

Case report

An 18 month old girl presented with a distorted pupil apparently following a fall downstairs some 4 weeks previously. Her right pupil was displaced inferotemporally, with a localised area of ectropion uveae and underlying segmental lens opacity.

An urgent EUA confirmed the clinical findings. The retina and ora serrata were normal on funduscopy but there was the vague suggestion of a subtle whitish pars plana abnormality inferotemporally. Visualisation of this area was however hampered by the lens opacity. B-scan was normal but high resolution scan showed an inferotemporal peripapillary iris cyst with irregular thickening of the peripheral iris. The ciliary body appeared normal but a triangular opacity of moderate reflectivity arose from the inferotemporal pars plana and extended along a thickened anterior hyaloid face (fig 1).

In the absence of a definite mass the tissue changes were thought possibly to be secondary to trauma, perhaps of a penetrating nature. It was decided to manage her conservatively with an initial period of observation and occlusion therapy.

Unfortunately, she was lost to follow up and re-presented 4 months later with a right mature cataract. A repeat EUA was performed and B-scan now showed a partial posterior vitreous detachment with cellular vitreous. High resolution scan showed extensive increased irregular echoes of variable reflectivity extending from the pars plana to the ciliary body and along the anterior hyaloid face to the posterior lens. Small echolucent areas were present as well as one area of hyper-reflectivity inferotemporally. Although there was no absolute shadowing posterior to this hyper-reflective area, it remained highly reflective at low gain suggesting possible cartilage (fig 2A–C).

Lens aspiration was performed revealing a dense, vascularised cyclitic membrane and underlying white fibrous tissue circumferentially around the pars plana and ciliary body though no distinct mass. Inferotemporally this structure was cystic with an area of hard chalky tissue, corresponding to the bright echo on scan, which was again thought probably to represent cartilage. A diagnosis of possible medulloepithelioma was made and confirmed on subsequent histological examination of tissue biopsies and vitreous cytology. Unfortunately, during surgery she developed an inferotemporal retinal dialysis requiring vitrectomy and inevitably some retrolenticular tissue was lost to further histological analysis during this procedure.

Subsequent enucleation and extensive histological examination of the globe confirmed the diagnosis of malignant medulloepithelioma, although no heterologous elements could be identified in the available tissue.

Comment

Limited information exists regarding the echographic features of medulloepithelioma.1–5 We had the rare opportunity of examining a case of malignant medulloepithelioma by B-scan and high resolution scan at both early and later stages of development, showing significant progression of the condition. Our case presented with a pupil abnormality, localised segmental cataract and probable early cyclitic membrane arising from the pars plana but not with a typical ciliary body mass. Development of a cyclitic membrane is a recognised feature associated with medulloepithelioma.1–5 We have demonstrated the value of high resolution echography in such cases particularly demonstrating early changes when little was clinically evident. Our case demonstrates that, even in the absence of a ciliary body mass, the suggestion of early or unusual retrolental membrane should alert one to the possible diagnosis of intraocular medulloepithelioma.
PostScript

R I Owen, P A C Tiffin, D H W Steel
Sunderland Eye Infirmary, Queen Alexandra Road, Sunderland SR2 9HP, UK

Correspondence to: Rona I Owen, Sunderland Eye Infirmary, Queen Alexandra Road, Sunderland SR2 9HP, UK; ronaowen@msn.com
doi: 10.1136/bjo.2004.045203
Accepted for publication 19 May 2004

References

Drug induced autoenucleation with resultant chiasmal damage

Self enucleation or “oedipism” is a rare form of self mutilation occurring with paranoid delusions, either as a result of a drug related toxic psychosis or in functional psychoses, such as schizophrenia. It is most often described in acutely psychotic patients, who have religious or sexual delusions. We report a case of self enucleation of a right eye in a 19 year old male—induced by drug psychosis. The force of autoenucleation traumatised the chiasm resulting in a left temporal field defect. Only two cases of a contralateral field defect secondary to chiasmal damage have been reported in the literature. Many drugs are known to cause hallucination leading to self mutilation. Deliberate self harm (DSH) is a well known entity which varies from mild (skin picking and hair pulling) to severe forms of self mutilation like self amputation and self enucleation. DSH is known to result from delusions and command hallucinations occurring in psychotic and mood disorders, dementia, personality disorder, drug misuse, and mental retardation. In adults, attempts at ocular damage are associated with acute psychosis, self enucleation being the extreme form of ocular mutilation.

Case report

A 19 year old man was admitted following attempted enucleation of his right eye during an acute psychotic episode after taking ecstasy, LSD, and excess alcohol. He described, “seeing an army of police officers attacking him.” He attempted to remove a “bomb” which had gone into his eye using a nail clipper and pliers. He was still in a state of psychosis running around aimlessly and had to be held to the ground by six people to prevent further self mutilation.

He was admitted to a general medical hospital in a state of psychosis and was treated with haloperidol. He had no known past psychiatric disorders. He is healthy, fit with no known past medical illness. Full blood count, urea and electrolytes, and blood gases were normal.

Toxicology of urine and blood were positive for amphetamine; no test for LSD was performed.

He was transferred to the Royal Victoria Eye and Ear Hospital on the same day in a stable condition. Ocular examination revealed no perception of light in his right eye with severely chemosed eyelids and the globe could not be visualised. Visual acuity in the left eye was 6/6 with normal anterior segment and fundus examination.

Exploration of the right socket under anaesthesia revealed no identifiable structures except for orbital fat, inferior rectus muscle, conjunctiva, and Tenon’s capsule (fig 1). The optic nerve stump was not visible. A porous polyethylene orbital implant was inserted, the Tenon’s and conjunctiva sutured over it in seven layers. Considering the instruments and force used to extract the eye, surprisingly there was no apparent loss of conjunctival tissue, leaving adequate fornices for a prosthesis, which was fitted 6 weeks later.

Goldmann visual field showed left upper temporal quadrantanopsia to the 14e and 13e targets, and a left hemianopia to the 12e target (fig 2), indicating trauma to the chiasm. The patient has been advised not to drive at present. A magnetic resonance image showed no visible abnormality of the chiasm or left visual pathway. The patient is being closely monitored by the psychological team and is attending a drug rehabilitation clinic.

Comment

This report presents a rare case of a self enucleation of the right eye in a young man. This severe trauma resulted in loss of vision in the right eye and partial visual field loss in the other eye. Avulsion of the optic nerve was found in the right eye. The left eye showed no evidence of ischaemia or sympathetic ophthalmia. The visual field defect of the left eye resulted from traumatic severance of the right optic nerve causing secondary chiasmal damage. There were no intracranial complications.

Life threatening complications may result from self enucleation, including intracranial or subarachnoid haemorrhage, cerebrospinal fluid leakage, and bacterial meningitis. Radiographic imaging is required to exclude intracranial bleeding, optic chiasmal injury, and bone fractures.

Self enucleation or “oedipism” is a rare entity which requires operative reconstruction of the orbit, and also neurological monitoring to identify and treat any possible intracranial complications. The other eye should be observed for possible sympathetic ophthalmia which may occur because of residual uveal tissue in the socket. Visual field of the remaining eye must be performed in the acute phase, as field loss secondary to chiasmal trauma or severe traumatic optic neuropathy may occur and may respond to intravenous steroids, though this is controversial. Field loss will have implications with regard to driving and some occupations and may even require the patient to be registered as partially sighted.

Long term psychiatric therapy should be implemented to prevent further self injurious behaviour, as according to literature severe forms of self mutilation after self enucleation can occur. This includes attempted suicide. Though cases of severe optic neuropathy and chiasmal damage are rarely reported, this may be due to lack of symptomatology and failure to perform field testing. The importance of visual field analysis cannot be overemphasised, because of the potential implications for affected patients.

I Tuwir, E Chako, D Brosnanah, L Cassidy
Royal Victoria Eye and Ear Hospital, Dublin, Republic of Ireland

Correspondence to: Dr Ismail Tuwir, Royal Victoria Eye and Ear Hospital, Dublin, Republic of Ireland; tuwir@hotmail.com
doi: 10.1136/bjo.2004.049676
Accepted for publication 19 May 2004

References

Repeated intravitreal injection of triamcinolone acetonide for diffuse diabetic macular oedema

Recent studies have suggested that intravitreal triamcinolone acetonide may be a treatment option for diffuse diabetic macular oedema. Since the duration of the effect of an intravitreal application of triamcinolone acetonide lasts between 4 weeks and up to 9 months, the purpose of this study was to evaluate the effect of a repeated intravitreal injection of triamcinolone acetonide.

Case reports
The clinical interventional case series study included four patients with diffuse diabetic macular oedema who consecutively received a second intravitreal injection of about 20 mg triamcinolone acetonide 7.6 (SD 3.9) months (median, 6.7 months; range, 4.1–13.1 months) after the first injection, and for whom follow up was longer than 3 months. The second injection was carried out, since visual acuity had decreased again after an initial increase following the first intravitreal injection. Mean follow up after the second injection was 5.6 (SD 4.2) months (median 5.6 months; range 1–10.5 months). Mean age of the patients was 62.0 (5.0) years (range 56.8–67.8 years; median 61.7 years), refractive error ranged between a mean of −2.50 (1.38) dioptres and +2.50 (1.38) dioptres. All patients were fully informed about the experimental character of the therapy and had signed an informed consent. The ethics committee of the university had approved the study. All patients received an intravitreal injection of about 20 mg triamcinolone acetonide in 0.2 ml Ringer’s solution as previously described in detail. After the first injection, visual acuity increased from 0.12 (SD 0.05) (range 0.08–0.20) to a maximum of 0.23 (SD 0.14) (range 0.10–0.40). Converting visual acuity measurements into the logarithm of the minimum angle of resolution (logMAR) showed a change in the minimum angle of resolution from 0.95 (SD 0.17) logMAR units to 0.71 (SD 0.29) logMAR units. After the second injection, visual acuity increased from 0.12 (SD 0.06) (range 0.08–0.20) to a mean maximal visual acuity of 0.18 (SD 0.06) (range 0.10–0.25). The minimum angle of resolution changed from 0.97 (SD 0.19) logMAR units to 0.77 (SD 0.17) logMAR units. All eyes increased in visual acuity. After the first injection, and after the second injection, respectively, intracocular pressure increased to values higher than 21 mm Hg in three eyes. For all of these eyes, intracocular pressure could be normalised by topical antiglaucomatous treatment.

Comment
The data of this study may suggest that the repeated intravitreal injection of about 20 mg of triamcinolone acetonide as treatment of diffuse diabetic macular oedema can be associated with a increase in visual acuity again in those patients who as “triamcinolone responders” showed an improvement in visual acuity after a preceding intravitreal injection of triamcinolone acetonide. It is in agreement with a previous study on repeated intravitreal injections of triamcinolone acetonide for exudative age related macular degeneration.

References

Papillary vasoproliferative changes in cat scratch disease
A 23 year old man presented with a 10 day history of floaters in both eyes, predominantly in the right. He denied a febrile illness and exposure to animals. General medical history was unremarkable. He was not taking any medications.

On examination his visual acuity was 6/4-1 in the right eye and 6/4 in the left eye. Anterior chambers were quiet in both eyes. The left eye subsequently developed marked papillary vasoproliferative changes at 12 months (fig 4).
PostScript 123

nosis of CSD.

patients with idiopathic uveitis.

than expected in the general population or in

further study but it may be more common

pathy.

usually good, although some patients may

changes at 12 months.

eye showing severe papillary vasoproliferative

Rochalimaea henselae

Colour fundus photograph of the left

diagnostic significance and should be sought

vascular proliferative changes may be of

superior penetration into the central nervous

inflammation,

chorioretinitis, retinitis, exudative maculopa-

chemotherapy.

It has also been known to be

associated with central retinal artery and vein

as Neocalilmae henselae) lasting 6–12 weeks in

the absence of antibiotic treatment. Ocular

lesions occur in about 6% of cases.7 This

case illustrates the papillary vasoproliferative

changes that can occur with CSD. Retinal

vascular proliferative changes may be of
diagnostic significance and should be sought

in patients with ocular CSD.

Ocular manifestations of cat scratch dis-
ease include Parinaud’s oculoglandular syn-
drome, neuroretinitis, optic neuritis, focal
chorioretinitis, retinitis, exudative maculopa-
thy, serous retinal detachment, vitreous inflam-

ation,6 and in this report, retinal vasoproliferative lesions. An angiomatous lesion has previously been described in cat

scratch disease.8 It has also been known to be

associated with central retinal artery and vein

occlusion, as well as neovascular glaucoma.9

Doxycycline and rifampicin have been used to
treat neuroretinitis in CSD, as they have

superior penetration into the central nervous

system and eye.10 Long term prognosis is

usually good, although some patients may

acquire a mild post infectious optic neuro-

pathy.4 The prevalence of CSD requires

further study but it may be more common

than expected in the general population or in

patients with idiopathic uveitis.6 Therefore, it

is important to look for papillary vasoprolifer-

ative changes that may suggest the diag-
nosis of CSD.

A A Chang, A Zeldovich, N H Sachdev, C Ly, P Beaumont

Sydney Retina Clinic, NSW, Australia

Correspondence to: Dr Andrew Chang, Sydney
Retinal and Day Surgery, Level 13, 187
Macquarie Street, Sydney NSW 2000 Australia;
achang@sydneyretina.com.au

doi: 10.1136/bjo.2004.04812

Accepted for publication 13 June 2004

References
1. Regnery R, Toppers J. Unraveling mysteries associated with cat scratch disease, bacillari-

2. Seckel WA, Mentzer DE, Newman NJ, et al. Cat scratch disease: posterior segment manifesta-

3. Fish RH, Hogan RN, Hightongate SD, et al. Peripapillary angiomatosis associated with cat

central retinal artery and vein occlusion,

neovascular glaucoma, and severe vision loss.

7. Suhler EB, Lauer AK, Rosenbaum JT. Prevalence of serologic evidence of cat scratch disease in

Treatment of recurrent orbital haemangiopericytoma with surgery and proton beam therapy

Orbital haemangiopericytoma is a rare, potentially malignant vascular tumour, which can

affect any part of the orbit. The treatment of choice is complete surgical excision but because

of its vascular nature and tissue friability during surgery this is frequently not achieved.1 2

Difficulties in correctly diagnosing this tumour preoperatively compound this problem.

Incomplete excision is associated with increased risk of local recurrence and meta-

static disease, which are reported to occur in up to 43% and 15% of cases respectively, and can

take many years to become manifest.3 4 Treatment options for orbital recurrence include

orbital exenteration, further attempts at com-

plete excision, or local excision and adjuvant

therapy with radiotherapy, brachytherapy,5 or

chemotherapy.6 To our knowledge the use of

proton beam therapy in controlling recurrent

orbital haemangiopericytoma has never been described. We therefore report such a case.

Case report

A 61 year old woman presented with a

second recurrence of a left medial orbital haemangiopericytoma 2 years following radi-
cal excision of the tumour via a transfrontal

approach, and 14 years after initial excision.

She was found to have non-axial proptosis of

the left eye. She also had restriction of the left

motility. In the 7 years following her proton

beam treatment serial magnetic resonance

imaging (MRI) has revealed no further

growth of the residual tumour mass (fig 2).

There is a high risk of this complication occurring,

as there would have been had external beam

radiotherapy been used instead. Nevertheless,

this report demonstrates that proton beam

therapy can be effective in controlling recurrent

Figure 4 Colour fundus photograph of the left eye showing severe papillary vasoproliferative changes at 12 months.

Figure 1 (A) Before further local excision and proton beam therapy the left medial orbital proptosis, swelling at the medial canthus (fig 1). Her

case of elongated swelling at the medial canthus. (B) 7 years after treatment the

Figure 1 (A) Before further local excision and proton beam therapy the left medial orbital proptosis, swelling at the medial canthus (fig 1). Her

Figure 2 (A) Before further local excision and proton beam therapy the left medial orbital proptosis, swelling at the medial canthus. (B) 7 years after treatment the

July 2004. Downloaded from http://bjo.bmj.com/ on April 27, 2022 by guest. Protected by copyright.
Figure 2 Axial (A) and coronal (C) MRI images before proton beam therapy. The haemangiopericytoma is evident in the left medial orbit. (B) and (D) show the same views 7 years after conservative surgery and proton beam therapy.

Bilateral surgically induced necrotising scleritis with secondary superinfection

Surgically induced necrotising scleritis (SINS) is a rare complication of ocular surgery that has been described after pterygium excision, cataract extraction, trabeculectomy, penetrating keratoplasty, strabismus surgery, and retinal detachment repair. We describe a rare case of bilateral necrotising scleritis complicated by a secondary polymicrobial infection following uncomplicated phacoemulsification and pterygia excision.

Case report

A 66 year old Samoan male, with type II diabetes, end stage renal disease, coronary artery disease, and gout underwent uncompli cated combined phacoemulsification and bare sclera pterygium excision (without anti-metabolites) in the right eye, followed 1 month later by the same combined procedure in the left eye. Three weeks later, the patient developed severe right sided eye pain. An erythrocyte sedimentation rate was 98 mm in the first hour, and oral prednisone (80 mg/day) was initiated. A temporal artery biopsy was negative and prednisone was discontinued after 4 days of treatment. One week later, the patient developed left sided eye pain as well as a productive cough. Corneoscleral necrosis developed in the left eye and rapidly progressed to perforation. On examination, the visual acuity was 20/200, the area of necrosis had enlarged and the pupil began to peak nasally. Systemic immunosuppression was initiated with an intravenous pulse of 1 g of both cyclophosphamide and methylprednisolone. Within 48 hours of initiating immune suppression, granulation tissue began to fill the areas of necrosis and ocular pain subsided. Two months following presentation, while on a prednisone taper, the patient’s best corrected visual acuity was 20/40 right eye. He remained at light perception in the left eye.

Comment

We believe this complicated case of bilateral, rapidly progressing, necrotising scleritis in a post-surgical patient represents a case of bilateral surgically induced necrotising scleritis (SINS) complicated by secondary polymicrobial infection. SINS has been reported following bare sclera pterygia excision, though it is more commonly associated with adjunctive β irradiation, thiotepa, and mitomycin C. The time course of events, as well as the response to

References

immune suppression supports a primary autoimmune aetiology complicated, secondly, by a polymicrobial infection. Immune suppression, however, was initiated only after aggressive antimicrobial therapy.

The necrotising nature of the scleritis in our patient is consistent with the series by O’Donoghue et al in which a fourfold greater rate of necrosis occurred in post-surgical patients compared to a non-surgically induced scleritis population. In their series, the majority of patients (75%) had two or more surgical procedures before the onset of scleritis, and systemic immune suppression was necessary in 93% of patients. Our case similarly illustrates the need to consider immunosuppressive therapy in patients with postoperative necrosis.

M R Vagefi, D A Hollander
Department of Ophthalmology, University of California, San Francisco, CA, USA

G D Seitzman, T P Margolis
Department of Ophthalmology and The Francis I Proctor Foundation, University of California, San Francisco, CA, USA

Correspondence to: Todd P Margolis, MD, The Francis I Proctor Foundation, 95 Kirkham Street, Room 305, University of California at San Francisco, San Francisco, CA 94143–0944, USA; tpms1@itsa.ucsf.edu
doi: 10.1136/bjo.2004.051359
Accepted for publication 4 June 2004

References

NOTICES

Worldwide clinical trials for new technique for early detection of eye disease
A unique new non-invasive technique for high resolution optical imaging of the eye is receiving global acclaim. By combining two high-resolution imaging technologies, the new technique provides doctors with 3-D images of the retina, macula and the optic nerve.

For more information, contact the Media Office on 01227 823581/823100 or email MediaOffice@kent.ac.uk News releases can also be found at: http://www.kent.ac.uk/news

Vision 2020 Priority Diseases
The latest (redesigned) issue of Community Eye Health (No 51) deals with the gaps between aims of Vision 2020 and how far we are still from them, especially in Africa. For further information please contact: Journal of Community Eye Health, International Resource Centre, International Centre for Eye Health, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK (tel: +44 (0)20 7612 7964; email: Anita.Shah@lshtm.ac.uk; online edition: www.jceh.co.uk). Annual subscription (4 issues) UK£28/US$45. Free to developing country applicants.

British Oculoplastic Surgery Society
Call for papers for the 5th annual meeting of the BOPSS to be held on 15 and 16 May 2005 at The Belfry, Birmingham. The abstract submission deadline is 4 February 2005, and abstracts can be submitted online at www.bopss.org.