Efficacy of pressure topical anaesthesia in punctal occlusion by diathermy

R W K Law, R T H Li, D S C Lam, J S M Lai

Aims: To prospectively compare the efficacy and safety of pressure topical anaesthesia in punctal occlusion by using cautery in the treatment of dry eye syndrome (DES) with that of conventional treatment by using needle injection of anaesthetic agents.

Methods: In a randomised controlled trial, 18 consecutive adult patients with DES requiring punctal occlusion were recruited over a 10 month period. Consenting patients were randomised into two groups. Group A patients received pressure topical anaesthesia in the right eye followed by injection anaesthesia in the left eye. Group B was vice versa. Punctal occlusion using cautery was performed in each eye after a specified time following the application of anaesthesia. The main outcome measures were the pain experienced during application of anaesthesia and that during punctal occlusion.

Results: 36 eyes of 18 patients were randomised to receive injection anaesthesia in one eye and pressure topical anaesthesia in the other. Nine patients (nine females) were in group A and nine patients (seven females, two males) in group B. The mean age of group A patients was 45.3 (SD 13.5) years, and that of group B patients was 55.6 (12.6) years. The two groups were comparable in terms of mean age \((p = 0.117)\) and mean pain score for pressure topical anaesthesia application \((p = 0.612)\), injection anaesthesia application \((p = 0.454)\), diathermy in pressure anaesthetised eyes \((p = 0.113)\), and diathermy in injection anaesthetised eyes \((p = 0.289)\). Paired \(t\) test was used to compare the mean pain score for pressure topical anaesthesia application \((16.8 (24.8))\) with those for injection anaesthesia application \((56.7 (30.0))\). 18 eyes of 18 patients were compared with the fellow eye of the same 18 patients. The mean pain score for injection anaesthesia was greater than for pressure topical anaesthesia application \((p < 0.0001)\) (statistical power = 0.87). No statistically significant difference was found in the mean pain score for diathermy for eyes that received pressure topical anaesthesia \((20.5 (27.5))\) compared with eyes that received injection anaesthesia \((23.1 (26.3))\) \((p = 0.760)\) (statistical power = 0.96). All 18 patients preferred pressure topical anaesthesia to injection anaesthesia.

Conclusion: Injection anaesthesia for punctal occlusion is more painful than pressure topical anaesthesia application. However, the pain experienced during diathermy application for punctal occlusion is similar between pressure anaesthetised eyes and injection anaesthetised eyes. Pressure topical anaesthesia is a less painful (in terms of anaesthesia application) but equally effective alternative to conventional injection anaesthesia when used for punctal occlusion.

Abbreviations: DES, dry eye syndrome
upper and lower lid under the pressurised effect of voluntary lid closure.

MATERIALS AND METHODS

Previous approval of the study protocol by the ethics committees of the United Christian Hospital was obtained. Patients with bilateral dry eyes (diagnostic criteria included: (a) symptoms and signs of DES and, (b) treatable causes of DES removed or corrected—for example, lipid tear abnormality as a result of blepharitis and lid abnormality causing evaporative dry eye, and (c) positive ancillary testing: fluorescein tear break up time <10 seconds and basal secretion test <5 mm) requiring punctal occlusion at United Christian Hospital were recruited. The study period was from February to November 2004. Other inclusion criteria were: (1) age over 18 years, (2) able to give informed consent, and (3) cooperative enough for punctal occlusion surgery under pressured or injection anaesthesia. Exclusion criteria were: (1) ocular or systemic conditions which are painful or require the regular use of analgesics; (2) medical, psychological, and social conditions predisposing to a different perception of pain.

Patients who fulfilled the criteria and agreed to be randomised for the study signed an informed consent. The patients were then randomised into one of two treatment groups using random number table. Group A patients received pressure topical anaesthesia in the right eye followed by injection anaesthesia in the left eye. Group B patients received injection anaesthesia in the right eye followed by pressure topical anaesthesia in the left eye. Neither the ophthalmologists recruiting the patients nor the patients were aware of which treatment group to join at the point of recruitment.

For all recruited patients, documentation of visual acuity, fluorescein tear break up time, and basal secretion test were performed in each eye. One drop of topical Novesin (benoxinate 0.4%, Novartis Pharmaceuticals Ltd) is instilled into each eye before receiving pressure or injection anaesthesia.

For group A patients, a cotton bud soaked in topical benoxinate (one drop, approximately 0.1 ml) is placed over the right lower lid punctum and the patient is asked to close the eye voluntarily and keep the cotton bud in place for 5 minutes (fig 1). After 30 seconds, punctal occlusion by diathermy is then performed for the right lower lid punctum. A volume of 0.1 ml of warm (room temperature) 2% lignocaine solution is then injected subcutaneously and slowly in 5 seconds within 0.5 cm of the left lower lid punctum. Punctal occlusion by diathermy is then performed for the left lower lid punctum, also after 30 seconds.

For group B patients, 0.1 ml of 2% warm lignocaine solution is injected subcutaneously in 5 seconds within 0.5 cm of the right lower lid punctum. After 30 seconds, punctal occlusion by diathermy is then performed for the right lower lid punctum. A cotton bud soaked (0.1 ml) in topical benoxinate is placed over the left lower lid punctum and the patient is asked to close the eye voluntarily and keep the cotton bud in place for 5 minutes. Punctal occlusion by diathermy is then performed for the left lower lid punctum after 30 seconds.

Postoperatively, the patient was questioned by an independent trained interviewer. Using visual analogue scales the patient was asked to give a pain score for anaesthesia application and punctal occlusion by diathermy for each eye. The visual analogue scale was 0–100, with a score of zero represented no pain at all and a score of 100 represented the worst pain ever. The patient was asked to put a cross on the 0–100 visual analogue scales. The patient was also asked which method of anaesthesia they preferred. At 3 months postoperatively, the patients were seen again at our clinic to review the patency of the punctum. Fluorescein tear break up time and basal secretion test are repeated, and symptoms of dry eyes are evaluated.

RESULTS

During the study period from February to November 2004, a total of 36 eyes of 18 patients with DES requiring punctal occlusion by diathermy were recruited into the study. Nine patients were randomised to group A and nine patients were randomised into group B. Table 1 summarises the demographic data of these patients. Group A consisted of nine females. Group B consisted of seven females and two males.

There was no statistically significant difference between the mean age (p = 0.117), mean pain score for pressure topical anaesthesia application (p = 0.612), mean pain score for injection anaesthesia application (p = 0.454), mean pain score for diathermy in the pressure anaesthetised eyes (p = 0.113), and mean pain score for diathermy in the injection anaesthetised eyes (p = 0.289) between the two groups. Table 2 summarises the means and standard deviation (SD) for the variables mentioned.

Paired t test was used to compare the pain score for pressure topical anaesthesia application with the pain score...
for injection anaesthesia application (table 3). Eighteen eyes of 18 patients were compared with the fellow eye of the same 18 patients. The mean pain score for injection anaesthesia was greater than for pressure topical anaesthesia application ($p<0.0001$) (statistical power = 0.87). The mean pain score for pressure topical anaesthesia was 16.8 (SD 24.8) and for injection anaesthesia was 56.7 (SD 30.0).

There was no statistically significant difference in the mean pain score for diathermy for eyes that received pressure topical anaesthesia compared with eyes that received injection anaesthesia ($p = 0.760$) (statistical power = 0.96). The mean pain score for diathermy in the pressure anaesthetised eyes was 20.5 (SD 27.5) and in the injection anaesthetised eye was 23.1 (SD 26.3). All 18 patients preferred pressure topical anaesthesia to injection anaesthesia. None of the patients requested top-up anaesthesia and none of the patients had the procedure aborted because of intolerable pain.

DISCUSSION

Since treatment was given in one setting and outcome measures were evaluated immediately, we did not have any problems with compliance or losses to follow up which might violate randomisation and reduce comparability between treatment groups.

The majority of the patients entered into the study were females. All patients with dry eye syndrome requiring punctal occlusion seen consecutively were invited to participate in the study. None of the patients declined the invitation. The higher proportion of females recruited simply reflected the preponderance of female patients presenting with dry eye syndrome in our clinical setting.

The reason why we randomised the patients into groups A and B was to ensure that the pain scores we obtained were not affected by which procedure was performed first. For example, having injection anaesthesia first may make pressure topical anaesthesia in the fellow eye less or more painful. Alternatively, having pressure topical anaesthesia first may make injection anaesthesia in the fellow eye more or less painful.

The two groups were comparable in mean pain scores for pressure topical anaesthesia, injection anaesthesia, pain during diathermy using injection anaesthesia, and pain during diathermy using pressure topical anaesthesia. This would suggest that having either injection or pressure topical anaesthesia first did not significantly affect the results in the fellow eye or, at least, the effects have been cancelled out.

Comparing the two eyes of the same patient is the best internal control for comparing the effects of two types of treatment. Any potential unknown confounding variables

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Summary of patient demographics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>9</td>
</tr>
<tr>
<td>Group B</td>
<td>9</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>9</td>
</tr>
<tr>
<td>Group B</td>
<td>9</td>
</tr>
</tbody>
</table>

Group A: RE, pressure topical anaesthesia; LE, injection anaesthesia.
Group B: RE, injection anaesthesia; LE, pressure topical anaesthesia.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Summary of visual analogue scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain score</td>
<td>No</td>
</tr>
<tr>
<td>Pressure topical anaesthesia application</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>9</td>
</tr>
<tr>
<td>Group B</td>
<td>9</td>
</tr>
<tr>
<td>Injection anaesthesia application</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>9</td>
</tr>
<tr>
<td>Group B</td>
<td>9</td>
</tr>
<tr>
<td>Diathermy in the pressure anaesthetised eyes</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>9</td>
</tr>
<tr>
<td>Group B</td>
<td>9</td>
</tr>
<tr>
<td>Diathermy in the injection anaesthetised eyes</td>
<td></td>
</tr>
<tr>
<td>Group A</td>
<td>9</td>
</tr>
<tr>
<td>Group B</td>
<td>9</td>
</tr>
</tbody>
</table>

Group A: RE, pressure topical anaesthesia; LE, injection anaesthesia.
Group B: RE, injection anaesthesia; LE, pressure topical anaesthesia.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Paired t test in comparing the pain score for pressure topical anaesthesia application with the pain score for injection anaesthesia application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain score</td>
<td>No</td>
</tr>
<tr>
<td>Pair 1</td>
<td></td>
</tr>
<tr>
<td>Pressure topical anaesthesia application</td>
<td>18</td>
</tr>
<tr>
<td>Injection anaesthesia application</td>
<td>18</td>
</tr>
<tr>
<td>Pair 2</td>
<td></td>
</tr>
<tr>
<td>Diathermy in the pressure anaesthetised eyes</td>
<td>18</td>
</tr>
<tr>
<td>Diathermy in the injection anaesthetised eyes</td>
<td>18</td>
</tr>
</tbody>
</table>
would be minimised. This would also allivate any concern
one would have for potential bias with two males in one
group and none in the other.

One surgeon performed all the punctal occlusion. The same
power setting with the same number of applications was
performed in each patient with the same diathermy machine.
The same independent interviewers assessed the outcome
measures. This minimised any potential bias caused by
confounding by such variables.

CONCLUSION
Pressure topical anaesthesia has many advantages over
conventional injection anaesthesia. We have demonstrated
in this study that it is the method preferred by the majority of
patients given the choice. Pressure topical anaesthesia
removes the risks associated with injection anaesthesia, such
as globe perforation and damage to ocular adnexae. Fears of
injection are also alleviated. There is no lid swelling or
peri orbital haematoma, which is commonly associated with
injection anaesthesia and can persist for several days.

ACKNOWLEDGEMENTS
We thank all the staff and colleague at United Christian Hospital who
helped with the study.

Authors’ affiliations
R W K Law, D S C Lam, Department of Ophthalmology and Visual
Sciences, The Chinese University of Hong Kong, Hong Kong Eye
Hospital, Kowloon, Hong Kong, People’s Republic of China
R T H Li, J S M Lai, Department of Ophthalmology, United Christian
Hospital, Kowloon, Hong Kong, People’s Republic of China

Financial support: none
Competing interests: none declared
Proprietary interest: none
Ethical approval: Previous approval of the study protocol by the ethics
committees of the United Christian Hospital was obtained.

Correspondence to: Dr Randa T H Li, Department of Ophthalmology,
United Christian Hospital, Hip Wo Street, Kwun Tong, Kowloon, Hong
Kong; drrandali@yahoo.com.hk

Accepted for publication 1 May 2005

REFERENCES
1 Lemp MA. Report of the National Eye Institute/Industry workshop on clinical
2 Stern ME, Beuerman RW, Fox RI, et al. The pathology of dry eye: the
interaction between the ocular surface and lacrimal glands. Cornea
1998;17:584–9
3 Bell RW, Butt ZA, Gardner RF. Warming lignocaine reduces the pain of
4 Morris R, McKay W, Mushlin P. Comparison of pain associated with
intradermal and subcutaneous infiltration with various local anesthetic
5 Morris RW, Whish DK. A controlled trial of pain on skin infiltration with local
7 Jones LT. The lacrimal secretory system and its treatment. J All India
9 Ohnhaus EE, Adler R. Methodological problems in the measurement of pain: a
comparison between the verbal rating scale and the visual analogue scale.
10 Sriwatanakul K, Kelvie W, Lasagna L, et al. Studies with different types of
visual analog scales for measurement of pain. Clin Pharmacol Ther