EXTENDED REPORT

Advantage of three dimensional animated teaching over traditional surgical videos for teaching ophthalmic surgery: a randomised study

A Prinz, M Bolz, O Findl

Background/aim: Owing to the complex topographical aspects of ophthalmic surgery, teaching with conventional surgical videos has led to a poor understanding among medical students. A novel multimedia three dimensional (3D) computer animated program, called “Ophthalmic Operation Vienna” has been developed, where surgical videos are accompanied by 3D animated sequences of all surgical steps for five operations. The aim of the study was to assess the effect of 3D animations on the understanding of cataract and glaucoma surgery among medical students.

Method: Set in the Medical University of Vienna, Department of Ophthalmology, 172 students were randomised into two groups: a 3D group (n = 90), that saw the 3D animations and video sequences, and a control group (n = 82), that saw only the surgical videos. The narrated text was identical for both groups. After the presentation, students were questioned and tested using multiple choice questions.

Results: Students in the 3D group found the interactive multimedia teaching methods to be a valuable supplement to the conventional surgical videos. The 3D group outperformed the control group not only in topographical understanding by 16% (p < 0.0001), but also in theoretical understanding by 7% (p < 0.0003). Women in the 3D group gained most by 19% over the control group (p < 0.0001).

Conclusions: The use of 3D animations lead to a better understanding of difficult surgical topics among medical students, especially for female users. Gender related benefits of using multimedia should be further explored.
Study design

Through a period of 8 weeks, four regular practical courses in ophthalmology were held at the Medical University of Vienna. Within the course blocks of two consecutive weeks (10 working days) students were also attending lectures. Alltogether, 172 medical students were included in this study. Because of the large number of students, each course block is subdivided into two parallel classes. During the course both classes were scheduled for a video presentation of cataract and glaucoma surgery: the A class in the first week (on the fourth day of the course) and the B class in the second week (on the eighth day of the course). Therefore, a class of approximately 25 students was included in our study per week. Each student class was randomly assigned to the 3D or control groups of the study, according to a randomisation list derived from a table of random numbers. A block randomisation was applied to ensure a balance between first and second weeks of courses. The presentations were presented over a PC beamer in the same lecture theatre. Before the presentation was started, students were informed about the study and given the choice to participate by anonymously answering a questionnaire following the presentation. The control group saw the surgeon’s view of the cataract and glaucoma procedures. The 3D group saw the director’s cut of the same procedures, which includes the 3D animations in addition to the surgeon’s view sequences identical to those in the control group. The narrated comments were identical in both groups. After completing and handing in the questionnaire, the students in the control groups received an opportunity to view the missed 3D animation sequences.

Statistical analyses of data trends

The data are presented as means and 95% confidence intervals (CI). The two sided unpaired Student’s t test was applied to the data. Probability values of less then 0.05 were considered to be statistically significant. Reliability analysis of the multiple choice questionnaire was calculated with Cronbach’s alpha coefficient that measures the internal consistency. This coefficient of test scores is obtained from a single test and is a function of the number of test items and the average intercorrelation among the items. A coefficient of 0.7 to 1 indicates a high reliability.

RESULTS

The randomisation of groups resulted in 90 students in the 3D group (55 women/35 men) and 82 in the control group (50 women/32 men).

Concerning the general questions in the questionnaire, significant differences between the two groups were found for most criteria (see table 1).
The largest difference in rating was found for the improvement of the spatial ability, with a mean better grade of 0.3 for the 3D group.

The 3D animation was confirmed to be an important and useful supplement to conventional surgical videos and it was suggested to use similar 3D animations in teaching of various other topics in medicine (fig 2).

The results (percentage of correct answers) of both groups on the multiple choice test, testing the topographical and the theoretical understanding of the operations, are illustrated in figure 3. The 3D group outperformed the control group not only in the topographical understanding tasks (p<0.001), but also in the theoretical understanding questions (p<0.001). An acceptable reliability of the entire multiple choice questionnaire was found with a Cronbach’s alpha of 0.69.

The differences between mean results of the tests of both groups are presented in table 2. Female students in the 3D group achieved significantly better test results in all categories, than in the control (video) group. This was not the case with male students. No significant difference was found between the first and the second week within both groups.

DISCUSSION

The use of multimedia in e-learning is indispensable when one considers that a person usually retains only 10–15% of that which is read, 10–20% of what is heard, and 20–30% of what is seen, but when audio and video materials are presented side by side the retention of knowledge increases to 40–50%.2 In this study, we compared the results of two different approaches to teaching medical students about ophthalmic surgery. Videos supported with 3D computer animations resulted in a difference of approximately one more correct answered MCQs of students as well for cataract (14%) and for glaucoma (11%) surgery compared to the common surgical videos alone. This result confirms those of Glittenberg et al.3 that showed the effectiveness of computer assisted 3D animation in teaching neuro-ophthalmology to medical students.

Also, our study extended the findings of several studies,1,4 showing a great acceptance and support of multimedia assisted education among students.

To our knowledge, “Ophthalmic Operation Vienna” is the first teaching project and learning aid for ophthalmic surgery, which systematically presents each surgical step using 3D animation and multiple view videos.

Nevertheless, there may be some limitations to our study. With respect to the study design, the internal validity needs to be questioned as both groups may not be comparable (selection bias). One of the reasons for the absence of a
female foraging hypothesis, based on the assumption of
regard to spatial ability. Several variables are assumed to be
some studies have found that men outperform women with
only in polygynous species, since males are compelled to
size hypothesis predicts the sex differences in spatial abilities
There are different opinions as to how important and
tial programs such as social applicability, social educative
the reliability of the multiple choice measure suggests an
acceptable intercorrelation of the multiple choice question-
ary important aspects of evaluating novel educational
perceptions. Our findings suggest that, mainly, women
and smaller sex differences are found on measures of spatial
mental rotation were used. With the possible influence of the menstrual cycle phase on that
Based on the theoretical and empirical principles of several evolutionary models, sexual selection
generally leads to the evolution of sex differences. The range
size hypothesis predicts the sex differences in spatial abilities
only in polygynous species, since males are compelled to
explore a larger area to maximise their reproductive success. The
size, or size of the territory, and mate system of polygynous rodents resulted finally in a selective modification
of neuroanatomical substrate, with an increase of the
predictive the innate visual and spatial ability may be relating
the possible influence of the menstrual cycle phase on that asymmetry. Based on the theoretical and empirical principles of several evolutionary models, sexual selection
generally leads to the evolution of sex differences. The range
size hypothesis predicts the sex differences in spatial abilities
only in polygynous species, since males are compelled to
explore a larger area to maximise their reproductive success. The
size, or size of the territory, and mate system of polygynous rodents resulted finally in a selective modification
of neuroanatomical substrate, with an increase of the
hippocampus/brain ratio. Silverman and Eals proposed the
The authors have no proprietary interest in any of the materials or methods mentioned in this study.

REFERENCE

development and evaluation of a computer-based training module. *Computers in

2 Giezendanner FD. Nouvelles technologies Éducatives multimedia au service de
nouvelles stratégies pédagogiques. Schweizerische medizinische

3 Gildenberg CG, Binder S. Computer-assisted 3D design software for teaching
neuro-ophthalmology of the oculomotor system and training new retinal

4 Sandroni C, Bocci M, Damià F, et al. O-2 Multimedia teaching of BLS in

5 Garg AX, Norman G, Sperotable L. How medical students learn spatial

6 Wanzel KR, Hamstra SJ, Anastakis DJ, et al. Effect of visual-spatial ability on

7 Siddhu RS, Tamio D, Jang R, et al. Interpretation of three-dimensional structure
from two-dimensional endovascular images: implications for educators in

8 Epting UK, Overman WH. Sex-sensitive tasks in men and women: a search for
performance fluctuations across the menstrual cycle. *Behavioral Neuroscience*