Abnormal crossing of the optic fibres shown by evoked magnetic fields in patients with ocular albinism with a novel mutation in the OA1 gene

L Lauronen, R Jalkanen, J Huttunen, E Carlsson, S Tuupanen, S Lindh, H Forsius, E-M Sankila, T Alitalo

Aim: To perform genealogical and clinical studies in Finnish families with X-linked ocular albinism (OA1), including characterisation of the potential misrouting of optic fibres by evaluating visual evoked magnetic fields (VEFs), and to determine the mutation behind the disease.

Methods: Three families with OA1 were clinically examined. VEFs were measured in two affected males and in one female carrier to characterise the cortical activation pattern after monocular visual stimulation. The neuronal sources of the VEFs were modelled with equivalent current dipoles (ECDs) in a spherical head model. All coding exons of the OA1 gene were screened for mutations by single strand conformation analysis and direct polymerase chain reaction sequencing.

Results: Genealogical studies revealed that the three families were all related. The affected males had foveal hypoplasia with reduced visual acuity varying from 20/200 to 20/50, variable nystagmus, iris transillumination, and hypopigmentation of the retinal pigment epithelium. The ECD locations corresponding to the VEFs revealed abnormal crossing of the optic fibres in both affected males, but not in the carrier female. A novel point mutation, leading to a STOP codon, was identified in the fifth exon of the OA1 gene.

Conclusions: The data indicate that the novel mutation 640C→T in the OA1 gene is the primary cause of the eye disease in the family studied. VEFs with ECD analysis was successfully used to demonstrate abnormal crossing of the optic fibres.

The X chromosomal Nettleship-Falls type ocular albinism (OA1; OMIM 300500) is the most common form of ocular albinism with a prevalence of 1 in 60 000 live births.1 Affected males have reduced visual acuity, nystagmus, iris transillumination, foveal hypoplasia, and loss of stereoscopic vision.2,3 Skin colour of the patients appears to be normal.4 The disease results from abnormal distribution of melanin. Microscopic examination of histological samples typically reveals macromelanosomes in pigment cells of skin and eye.7,8 Carrier females are usually asymptomatic, but because of random X inactivation,9 the majority of them show some signs of carriership including pigment changes in the fundus, iris transillumination, and macromelanosomes in skin biopsy.10-12

The disease phenotype results from mutations in the OA1 gene (albinism database: albinismdb.med.unm.edu). The gene has been localised to Xp22.32,13-16 and it consists of nine exons, encoding a protein of 404 amino acids.17,18 The OA1 gene product is an intracellular G protein coupled receptor that localises to melanosomes, and is shown to be involved in melanosome biogenesis and maturation.19-21

A typical feature of ocular albinism is abnormal crossing of the visual pathways at the chiasma: the majority of the fibres from each eye cross to the contralateral hemisphere, while in healthy subjects, only fibres from the nasal half of the retina cross. Accordingly, abnormal lateralisation of visual evoked potentials (VEPs) to monocular stimulation has been reported in ocular albinism,22-25 although in some studies no abnormal lateralisation has been found.26 A potential difficulty in evaluating VEP studies is that these have usually been recorded from a limited number of channels, which precludes accurate estimation of the underlying neuronal generators. In magnetoencephalography (MEG), the active brain areas are detected by recording the weak magnetic fields caused by activation of neuronal populations at the cortex.27 In contrast with electric potentials, the magnetic fields are not altered by the different conductivities of the intervening tissues. Therefore, with multichannel MEG devices, the accurate location and strength of the neuronal generators of evoked responses can frequently be determined. Thus, it is possible—for example, by recording visual evoked magnetic fields (VEFs), to determine whether a half field visual stimulus activates the visual cortex ipsilaterally or contralaterally to the stimulated eye. We have previously reported preliminary results to half field checkerboard stimulation in patients with ocular albinism.28 Recently, Ohde et al29 used VEFs to show misrouting of the optic fibres in one patient with ocular albinism and two patients with oculocutaneous albinism. However, they used stroboscopic light with monocular or binocular stimulation instead of half field stimulation.

This study was conducted to evaluate clinical findings, including characterisation of the misrouting of the optic fibres with VEFs, in patients with X chromosomal ocular albinism. Molecular genetic analysis of the OA1 gene was performed to determine the mutation behind the disease.

MATERIALS AND METHODS

Clinical studies

Subjects and ophthalmic examination

Patients and carriers belonging to the three families (descendants of VII-2, VII-3, and VII-10, fig 1) were clinically studied. Ocular examinations were performed using a Haag-Streit slit lamp microscope and a 90 D or a three mirror lens. Since the patients of the three families appeared to have both...
a similar phenotype and ancestors from the island of Seiskari, we initiated genealogical studies using church registers to find out whether the families are related.

Magnetoencephalography

Two brothers (IX-8 and IX-10) with OA1, one carrier female (VIII-11), and five healthy control subjects (age range 23–51 years) underwent VEF studies. The two patients and all controls were measured with a 122 channel gradiometer (Neuromag Ltd, Helsinki, Finland) and the carrier with a 306 channel system (Elekta Neuromag, Oy, Helsinki, Finland), located inside a magnetically shielded room. The subject sat with his/her head positioned inside the helmet-shaped sensor array, and watched a fixation point in the middle of the stimulus screen placed 1.5 metres in front of him/her. The nasal and temporal visual half fields of the left and right eye were stimulated separately with a black and white checkerboard pattern reversing at 1 Hz. The check size was approximately 3°. Two sets of 200 responses were averaged for both half fields of both eyes. The signals were band pass filtered between 0.1 Hz and 200 Hz and sampled at 616 Hz. Epochs containing amplitudes exceeding 3000 fT/cm in the MEG channels or 150 μV in the electro-oculogram were automatically discarded. An epoch lasted 600 ms, including a 100 ms prestimulus baseline. The evoked local cortical activity was modelled with equivalent current dipoles (ECDs), representing the location, orientation, and strength of localised cortical activation. The ECD locations were given in a cartesian head coordinate system, where the x axis passes through the preauricular points from left to right, the positive y axis passes through nasion, and the z axis points upwards. The ECDs at the time of the most prominent activity (at about 100 ms after stimulus) were used in the analyses.

Molecular studies

DNA was extracted from blood samples using standard methods. All nine coding exons of OA1 were polymerase chain reaction (PCR) amplified from genomic DNA. Mutation analysis was carried out using single strand conformation analysis (SSCA) and direct PCR sequencing (ABI310, Applied Biosystems, Foster City, CA, USA).

RESULTS

Genealogical studies and clinical data

The three families were traced back to the 18th century using church registers. A common forefather, born on the island of Seiskari in 1700, was identified (fig 1). Of the eight males studied, seven had foveal hypoplasia and hypopigmented fundi with visible choroidal vessels (table 1). Male IX-11 had foveal hypoplasia but normally pigmented fundi. Optic discs were slightly or markedly pale in four males. Male XI-2 had congenital nystagmus and strabismus and was first examined as a baby. His VEP recordings suggested misrouting of the optic fibres. All the six clinically studied carriers showed some carrier manifestations (table 2).

<table>
<thead>
<tr>
<th>Pedigree code</th>
<th>Age (years)</th>
<th>Nystagmus</th>
<th>Iris translucency</th>
<th>VA R/L</th>
<th>Refractive error (D) R/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII-9</td>
<td>74</td>
<td>(?)</td>
<td>—</td>
<td>20/125/20/125</td>
<td>+0.0 – 2.5 x 0.5</td>
</tr>
<tr>
<td>IX-8</td>
<td>44</td>
<td>(?)</td>
<td>+</td>
<td>20/60/20/50</td>
<td>–2.5 – 4.0 x 0.5</td>
</tr>
<tr>
<td>IX-10</td>
<td>49</td>
<td></td>
<td>+</td>
<td>20/100/20/100</td>
<td>–2.25 – 4.0 x 0.160</td>
</tr>
<tr>
<td>IX-11</td>
<td>50</td>
<td></td>
<td>+</td>
<td>20/100/20/100</td>
<td>–9 – 3.5 x 15/15</td>
</tr>
<tr>
<td>X-2</td>
<td>50</td>
<td>+</td>
<td>+</td>
<td>20/60/20/60</td>
<td>+3.25 – 2.25 x 0.25</td>
</tr>
<tr>
<td>X-3</td>
<td>51</td>
<td>+</td>
<td>+</td>
<td>20/200/20/200</td>
<td>+5.0 – 1.0 x 170</td>
</tr>
<tr>
<td>X-5</td>
<td>54</td>
<td>+</td>
<td>+</td>
<td>20/100/20/100</td>
<td>–2.75 – 2.0 x 0.20</td>
</tr>
<tr>
<td>XI-2</td>
<td>5</td>
<td>+</td>
<td>+</td>
<td>20/160/20/100</td>
<td>+6.25 – 1.0 x 170</td>
</tr>
</tbody>
</table>

*Low frequency nystagmus at lateral gaze.
†Refraction after cataract surgery.
VA, visual acuity; R/L, right and left eye; D, dioptre.
Magnetoencephalography
The monocular half field checkerboard stimulation resulted in responses over the occipital area in both controls and patients (fig 2). For stimulation of either eye, in all controls and in the carrier female, the maximum activation was over the left hemisphere for the right half field stimulation, and over the right hemisphere for the left half field stimulation. In the patients, both left and right half field stimulation resulted in activation over the contralateral hemisphere. The most prominent deflection peaked at about 100 ms (table 3) and was designated as P100m, in analogy to the P100 VEP component. The topographic P100m magnetic field distributions showed dipolar patterns (fig 3), indicating that the P100m was generated by localised cortical activity amenable to modelling with an ECD. In the patients, the P100m ECD to both left and right half field stimulation of the left eye was in the right visual cortex (x>0, table 3). The ECD source locations after stimulation of both half fields were close to each other in the patients, while a clear difference in the lateral direction (on the average 42 mm, table 3) was found in the controls. In the patients, the ECD strength was similar to that in the controls for the temporal half field with normally crossing fibres, but clearly weaker for the nasal half field, which showed abnormal crossing (table 3, fig 3).

Mutation analysis
Sequence analysis revealed a novel base substitution, 640C>T, in the fifth exon of the OA1 gene. This substitution changes the glutamine at position 214 to a stop codon. The mutation co-segregated with the disease phenotype in the Finnish family and was not found in 140 normal male control samples.

Table 2 Clinical findings in six female carriers

<table>
<thead>
<tr>
<th>Pedigree code</th>
<th>Age (years)</th>
<th>Iris translucency</th>
<th>Fundus appearance</th>
<th>VA R/L</th>
<th>Refractive error (D) R/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII-8</td>
<td>70</td>
<td>–</td>
<td>Patchy peripheral RPE</td>
<td>20/60/20/20</td>
<td>+2.25/−1.5/×100/+3.0/−1.75/×75</td>
</tr>
<tr>
<td>VIII-11</td>
<td>72</td>
<td>+</td>
<td>Patchy RPE</td>
<td>20/20/20/20</td>
<td>+1.75/−0.5/×30/+1.5/−0.5/+90</td>
</tr>
<tr>
<td>IX-2</td>
<td>71</td>
<td>+</td>
<td>Patchy RPE</td>
<td>20/25/20/20</td>
<td>−9.0/−0.5/×180/−9.0</td>
</tr>
<tr>
<td>X-7</td>
<td>23</td>
<td>+</td>
<td>Normal</td>
<td>20/20/20/20</td>
<td>−0/−0/−0/−0</td>
</tr>
<tr>
<td>X-8</td>
<td>15</td>
<td>+</td>
<td>Patchy RPE</td>
<td>20/20/20/20</td>
<td>+0/−0/−0/−0</td>
</tr>
<tr>
<td>X-9</td>
<td>12</td>
<td>+</td>
<td>Patchy RPE</td>
<td>20/20/20/30</td>
<td>−9.5/−5.75</td>
</tr>
</tbody>
</table>

*Macular pucker.
†Anisometropic amblyopia.
VA, visual acuity; R/L, right and left eye; D, dioptre; RPE, retinal pigment epithelium.
Novel mutation in the OA1 gene

Table 3 The mean latencies, locations, and strengths of P100m ECDs for stimulation of the left eye in patients and controls. The standard deviations are in parentheses

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Stimulus</th>
<th>Latency (ms)</th>
<th>Coordinates x (mm)</th>
<th>y (mm)</th>
<th>z (mm)</th>
<th>Strength (nAm)</th>
<th>g (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>Left HF</td>
<td>99 (1)</td>
<td>20 (3)</td>
<td>−54 (2)</td>
<td>42 (2)</td>
<td>23 (5)</td>
<td>92 (5)</td>
</tr>
<tr>
<td>(n = 2)</td>
<td>Right HF</td>
<td>100 (3)</td>
<td>26 (1)</td>
<td>50 (1)</td>
<td>9 (4)</td>
<td>88 (6)</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>Left HF</td>
<td>103 (9)</td>
<td>34 (5)</td>
<td>−57 (18)</td>
<td>57 (7)</td>
<td>19 (17)</td>
<td>88 (2)</td>
</tr>
<tr>
<td>(n = 5)</td>
<td>Right HF</td>
<td>106 (11)</td>
<td>−8 (5)</td>
<td>−57 (14)</td>
<td>56 (11)</td>
<td>16 (12)</td>
<td>92 (4)</td>
</tr>
</tbody>
</table>

E-M Sankila, Department of Ophthalmology, Helsinki University Central Hospital, Helsinki, Finland

*These authors contributed equally to this work.

ACKNOWLEDGEMENTS

The authors thank the families with members affected by ocular albinism for participation and Dr Ilkka Kaiilta for the help in collecting samples.

REFERENCES

20. Shen B, Rosenberg B, Orlov SJ. Intracellular distribution and late endosomal effects of the ocular albinism type I gene product: consequences of...

RP1 mutations cause autosomal recessive retinitis pigmentosa

P1 gene mutations have been discovered for the first time in autosomal recessive retinitis pigmentosa (RP), according to a study of consanguineous Pakistani families with the condition. They are not a major cause of the disorder in Pakistanis, say the researchers.

All affected members of two families were homozygous at the RP1 locus, whereas their parents and unaffected siblings were heterozygous. A homozygous C→T missense mutation at nucleotide 1118 (thre→isoleu at codon 373) segregated with affected family members. Unaffected members were all heterozygous for the mutation, and 100 ethnically matched, unrelated, healthy controls showed no homozygous mutation. A third family had a homozygous four base pair insertion at 1461-65 TGAA, producing a stop codon and a drastically shortened protein product. Again, the mutation segregated with affected family members; it was present in some other members and parents of affected members as a heterozygous mutation but not in the controls. Affected members of all three families had severe RP and were completely blind by age 18 years. Finally, a new heterozygous G→A missense mutation at nucleotide 2005 (ala→thre at codon 669) was found in one patient in a random panel of 150 patients with RP screened for RP1 mutations, but not in the controls.

All patients, their parents, and some of their unaffected siblings were thoroughly investigated and had electroretinographic examinations. Mutational analysis comprised amplification of DNA from blood samples, heteroduplex analysis, and direct DNA sequencing.

All previously known mutations in the RP1 gene cause autosomal dominant RP.