Management of childhood epiphora

J E Marr, A Drake-Lee, H E Willshaw

AIM

We present the results of our collaborative ophthalmological and ENT endonasal procedures for persistent epiphora in children and provide a rationalised plan for the management of childhood epiphora.

Study design

This is a retrospective case series of 92 eyes of 70 children undergoing surgery, for persistent congenital or acquired nasolacrimal system obstruction. Children were admitted between January 1991 and September 2003. All the children had previously undergone two technically successful probing procedures, but had persistent symptoms. A successful outcome was indicated by symptomatic relief.

The investigation was undertaken before ethical approval for retrospective studies was a requirement in our institution. All data were anonymised.

Subjects

Congenital nasolacrimal duct obstruction

Sixty four children (85 eyes) had been symptomatic since birth. The mean age at presentation to the tertiary referral centre was 36 months (range 5 months to 11 years). Seventeen of these 64 children had other associated abnormalities (table 1).

Acquired nasolacrimal duct obstruction

Six children (seven eyes) presented with acquired epiphora. The mean age at presentation was 7 years (range 1–11 years). In three eyes the epiphora occurred after acute dacryocystitisin previously asymptomatic children.

METHODS

Endonasal intubation

Following induction of anaesthesia, a cotton wool applicator soaked in 4% cocaine is placed in the nose under the inferior turbinate. After 5 minutes the applicator is removed and the inferior turbinate is then repositioned. The tubes are left in situ as shown in table 2, after which they are removed under general anaesthesia.

Endonasal DCR

Following induction of anaesthesia, two cotton wool applicators soaked in 4% cocaine are placed in the nose adjacent to the anterior end of the middle turbinate and middle meatus. After 5 minutes the applicators are removed and an injection

Abbreviations:

DCR, dacryocystorhinostomy.
of 2% lignocaine and adrenaline 1:80 000 is made submuco-
sally. A fibreoptic light pipe is introduced through the lower
canalculus to identify the lacrimal fossa for the endonasal
surgeon. If the nose is large enough a 0˚ 2 mm diameter
Hopkins rod is inserted into the nose and used for the
procedure. If the nasal aperture is too small, an illuminated
Killians endoscope is used. The mucosa over the floor of the
lacrimal fossa is elevated and then the bone is drilled with an
angled drill to create an ostium of approximately 1.5 cm
diameter. The lacrimal sac is opened under direct vision.
Tubes are then inserted as above and the inferior turbinate
relocated. The tubes are left in situ for 6 weeks and then
removed as described previously.

RESULTS

Congenital nasolacrimal duct obstruction alone

Forty seven children (63 eyes) had congenital nasolacrimal
duct obstruction with no other associations. The procedures
undertaken, complications, and outcomes are summarised in
table 2. A successful outcome was obtained in 46/63 (73%)
eyes.

The outcome in 10 eyes was not known—this was largely
because those children had been referred from outside units
who then undertook postoperative follow up. The children
were subsequently discharged from those units on the
understanding they would return if they remained sympto-
matic. If one were to assume that failure to return indicates
successful outcome then the overall success rate in this group
would rise to 89%.

Congenital nasolacrimal duct obstruction and
associated problems

Seventeen children (22 eyes) had congenital nasolacrimal
duct obstruction plus associated conditions. A successful
outcome was obtained in 18/22 eyes (82%).

Table 1 Associated pathology

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>Number of children (number of eyes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choanal atresia</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Craniosynostosis</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Down’s syndrome</td>
<td>6 (9)</td>
</tr>
<tr>
<td>Midfacial dysmorphism and/or</td>
<td>6 (8)</td>
</tr>
<tr>
<td>cleft</td>
<td></td>
</tr>
<tr>
<td>Russell-Silver syndrome</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Unknown dysmorphic syndrome</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

Acquired nasolacrimal duct obstruction

Six children (seven eyes) presented with acquired symptoms.
The mean age at presentation was 7 years (range 1–11 years).
In three eyes the epiphora occurred after acute dacryocystitis
in previously asymptomatic children. A successful outcome
was obtained in four children (four eyes). One child
presented at the age of 5 months with bilateral dacracro-
cyctitis following an episode of conjunctivitis having been
previously symptomatic. She was lost to follow up after the
first postoperative visit.

Procedures

The outcomes of all the procedures in the different patient
groups are shown in figure 1.

Intubations

Seventy eight intubations were undertaken and the result
was identified in 70. The success rate was 53/70 (76%).

Endonasal DCRs

Three endonasal DCRs were performed as primary proce-
dures, one following a previously failed DCR, and 12
following unsuccessful intubations. The overall success rate
was 14/16 (87%).

External DCRs

Primary, four (two successes; outcome unknown in two);
following intubation, three (one success (33%)); following
endonasal DCR, three (two successes (66%)); overall success,
5/8 (63%).

COMPLICATIONS

An intraoperative complication occurred in only one child.
This was a burn from the shaft of the drill to the nostril and it
did not affect the surgical outcome. A mild postoperative
epistaxis occurred in one child.

A nasal discharge in one child necessitated early tube
removal and once again this did not affect the success of the
procedure. Asymptomatic cheesewiring occurred in three
children who were symptomatically cured. Cheesewiring
occurred in one girl with mid-facial dysmorphism who was
not cured, but the cheesewiring was not thought to be a
significant factor in the procedures failure. A punctal
granuloma occurred in one case and this case subsequently
failed.

Table 2 Surgical intervention and outcome—congenital nasolacrimal duct obstruction

<table>
<thead>
<tr>
<th>Procedure sequence</th>
<th>Outcome</th>
<th>n</th>
<th>Tubes out (mean) (range)</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intubation alone</td>
<td>Cure</td>
<td>38</td>
<td>5 months (1 day–10 months)</td>
<td>Symptomatic cheesewiring in three cases</td>
</tr>
<tr>
<td></td>
<td>Not known</td>
<td>8</td>
<td>Not known</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Fail</td>
<td>4</td>
<td>3 months (1–3 months)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3 days</td>
<td>Punctal granuloma</td>
<td></td>
</tr>
<tr>
<td>Intubation + endo DCR</td>
<td>Cure</td>
<td>5</td>
<td>Not recorded</td>
<td>Intra-op nostril burn + late cheesewire</td>
</tr>
<tr>
<td></td>
<td>Fail</td>
<td>1</td>
<td>6 months</td>
<td>Tube prolapse</td>
</tr>
<tr>
<td>Intubation + endo DCR + external DCR</td>
<td>Cure</td>
<td>1</td>
<td>1 month</td>
<td>Cheesewire</td>
</tr>
<tr>
<td></td>
<td>Cure</td>
<td>1</td>
<td>6 months</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Cure</td>
<td>1</td>
<td>Not recorded</td>
<td>None</td>
</tr>
<tr>
<td>Endo DCR (previous failed external DCR at other centre)</td>
<td>Cure</td>
<td>1</td>
<td>6 months</td>
<td>None</td>
</tr>
</tbody>
</table>

DCR, dacryocystorhinostomy

Marr, Drake-Lee, Willshaw
DISCUSSION

This is a retrospective assessment of the outcome of surgery in 92 children with epiphora who had previously failed two probing procedures. All the surgery was performed endonasally, by a joint ophthalmology/ENT team, and the large majority of the children were followed up by that team to determine symptomatic relief and, where possible, lacrimal system patency. A single clinician skilled in endonasal surgery could undertake the various procedures; however, in our experience the technical difficulties associated with endonasal surgery in children make a team approach preferable.

The great majority of the children had congenital nasolacrimal obstruction, and in that group at least 73% and possibly 89% were cured. The presence of associated systemic problems did not significantly reduce the success rate, despite the fact that six children (nine eyes) had Down’s syndrome which is known to carry a poorer prognosis for lacrimal surgery. The much reduced success rate in children with acquired nasolacrimal obstruction is predictable, but even in this group the results are sufficiently good to warrant an attempt at endonasal surgery before proceeding to “ab externo” surgery.

Nasolacrimal intubation performed as a joint procedure is quick and relatively complication free. The correct tensioning of the tubes is necessary to avoid cheesewiring through the puncta (when the tubes are too tight) or tube prolapsed from the puncta (when the tubes were too loose) requires experience, but cheesewiring when it occurred did not adversely affect the cure rate. Tube prolapse was distressing for the family, but did not cause the child any great discomfort and does not (in our experience) cause any corneal epithelial damage. However, because it often necessitated early tube removal it could lead to surgical failure, as happened in one of our cases.

This raises the question of the optimum duration for the tubes remaining in situ. In a previous report it was recommended that the tubes remain in place for 6 months. However, subsequent studies have suggested that this is unnecessarily long and our current practice is to remove the tubes after 6 weeks.

Endonasal DCR, though technically difficult in small children, offers a number of advantages over the ab externo approach. It avoids the need for a skin incision and consequent scarring, it enables accurate creation of a drainage ostium even when the lacrimal sac is small and scarred, and it is accompanied by much more limited peroperative bleeding. Using a joint ophthalmology/ENT approach, we were able to cure 87% of those children requiring DCR. All these children were treated as day cases, and the only complication was a small burn to the ala caused by a drill tip (the use of a drill to create the ostium is not always necessary, but a significant number of these children have thickened bone in the floor of the lacrimal fossa, and a drill or laser should always be available).

This contrasts with a previous report in which an extremely impressive 96% cure rate was achieved with ab externo DCR but where 52 of 127 admissions required overnight stay, and three children developed orbital cellulitis and required systemic antibiotics.

CONCLUSIONS

Endonasal intubation and endonasal DCR are effective procedures, and play an important role in the management of childhood epiphora. Early tube removal did not adversely affect the outcome in the majority of cases in which it occurred, and removal at 6 weeks should now be regarded as the norm. Complication rates were low and 100% day case rates were achieved for the endonasal procedures.

Authors’ affiliations
J E Marr, H E Willshaw, Department of Paediatric Ophthalmology, Children’s Hospital, Birmingham, UK
A Drake-Lee, Department of Paediatric Otolaryngology, Children’s Hospital, Birmingham, UK

Competing interests: none declared

Correspondence to: Mr H E Willshaw, Department of Paediatric Ophthalmology, Children’s Hospital, Steelhouse Lane, Birmingham B4 6NH, UK; harry.willshaw@bch.nhs.uk

Accepted for publication 23 April 2005
REFERENCES
2 Robb RM. Success rates of nasolacrimal duct probing at time intervals after 1
of nasolacrimal duct probing for congenital nasolacrimal duct obstruction.
4 Shurrock SM, MacEwen CJ, Young JD. Long term results after probing for
5 MacEwen CJ, Young JD, Barras CW, et al. Value of nasal endoscopy in the
diagnosis and management of children with congenital epiphora.
6 Ram B, Barras CW, White PS, et al. The technique of nasendoscopy in the
7 Gunton KB, Chung CW, Schnall BM, et al. Comparison of balloon
dacrystocystoplasty to probing as the primary treatment of congenital
8 Lee DH, Song HY, Ahn H, et al. Balloon dacryocystoplasty: results and factors