PHACOERISIS: OBSERVATIONS ON THE TECHNIQUE, WITH A REPORT ON 115 CONSECUTIVE CASES

BY

M. M. CRUICKSHANK, B.Sc., M.B., Ch.B., Capt. I.M.S.

"PHACOERISIS consists in withdrawing the crystalline lens complete in its capsule, by its anterior surface from the eye, without either traction or violence to the zonula, and extracting it completely, without having produced ectopias or traumatism to intraocular structures." (1)

Extraction of the lens in its capsule by means of a suction apparatus was first done in 1910 by Vard Hulen(3) of San Francisco, who reported six successful cases. It is, however, to the prolonged and careful scientific research work of Barraquer, of Barcelona, that the operation owes its present position amongst surgical procedures for the removal of the cataractous lens in its capsule. In July, 1917, Barraquer submitted a statement to the Royal Academies of Medicine and Surgery of Madrid and Barcelona, explaining the process invented by him for the total extraction of cataract. In 1919, he published the statistics of his first 1,000 cases, disregarding the first group of patients, whose cases served to determine the technique. His results were remarkably good, he having only four cases of iris prolapse, four cases of burst capsule, and 70 per cent. of cases with visual acuity between 6/9 and 6/6(4).

In 1922, M. de Saint Martin(5) reported his first 20 cases, in which 70 per cent. gave visual acuteness superior or equal to 6/9, as
against 41 per cent., resulting from a series of 20 extractions carried out by the classical method. This operator, however, underestimates the difficulties attendant on phacoerisis, when he says: "The new process is neither difficult in its execution nor dangerous for the eye. It only requires the scrupulous carrying out of the different operative periods and a certain dexterity which is soon acquired." I agree with him, however, when he says: "One of the great advantages of the process consists in the facility in extracting cataracts not completely mature."

In 1922, Gallemearths\(^6\) reported 46 cases performed by the Barraquer method, gave his visual results, and enumerated accidents which occurred during and after the operation. At the Annual Congress of the Ophthalmological Society held in 1923, Affleck Greeses and Foster Moore\(^7\) both read papers dealing with the results of a series of operations in which they made use of the Barraquer technique. Affleck Greeses, in his report, states that, out of a total of 51 cases, 31 cases of which were successful, there were 7 cases of burst capsule, all of which required needling later, and 13 cases in which the lens had to be removed with the spoon, slight vitreous loss resulting. He concludes that in successful cases the results leave nothing to be desired; a black pupil free from membrane and excellent visual acuity being secured. The method, in his opinion, however, is less certain in results than is the case in extraction with capsulotomy. Foster Moore, dealing with the results following operation in 33 cases, reports 22 successful, 5 with vitreous loss, but with excellent visual results. The remaining 11 had to be completed by some other method, and in 9 of these there was some vitreous loss. He concludes that the advantage in the method lies in the absence of post-operative iritis and in obtaining a uniform black pupil, while the outstanding disadvantage is the frequency of vitreous loss, amounting in these cases to 22.7 per cent. The operation, in his opinion, contains a considerable element of danger, especially in the matter of vitreous loss, so that for general use it must be regarded as inferior to older methods, but he adds that for immature and sclerosed lenses, the Barraquer operation has distinct advantages of its own.

Outside India, speaking generally, the intracapsular operation is still regarded as a dangerous procedure, and even in India, where opportunities for trying out new methods for the removal of the lens are numerous, it is not yet generally accepted as the operation of choice. It is not surprising then, that even in India phacoerisis has been taken up, tried and given up, either because failure has followed the first few cases\(^8\), or because the percentage of successes has not warranted its continuance in preference to tried methods\(^9\).

During the months of January and February, 1924, Dr. Holland, of Quetta, afforded me the unique opportunity of examining all
cases of cataract operated upon in his eye clinic in Shikarpur, Sind. I examined 1,455 cases of cataract; in 1,209 cases the lenses were removed in the capsule; in 69, capsulotomy was performed; and 177 were operated upon by Barraquer's method. Of the latter, 115 were done by me, and form the subject of this report.

I had previously noted in a few cases that, when the lens was removed in the capsule, no complications having occurred during or after the operation, there was to be seen, on examining the eye with the corneal loupe, a meshwork of fine threads or fibres remaining in the pupil. This did not necessarily interfere with vision, but the presence of such a meshwork in the pupil was inexplicable, seeing that the lens had been removed in its capsule, leaving a clear, black pupil. These fine threads, invisible to the naked eye, may be due to some change in the hyaloid membrane, or to changes in the anterior layers of the vitreous. Or they may arise from degenerative changes in the cells of the posterior capsule, degenerated cells and semi-dissolved lens fibres being left behind in the pupil after the removal of the lens

Major Wright, I.M.S., believes that "trauma to the posterior capsule is followed by the invasion of the vitreous by proliferative types of cells, and a study of results with a Gullstrand's lamp and the corneal microscope in such cases shows such invasion." The nature of these fibrils, whether physiological or pathological, remains in doubt.

Harrison Butler, in a paper on the practical value of the slit-lamp, points out that, "under suitable conditions, it is not difficult to see the vitreous fibrils with the simple lens," and adds, "the correct interpretation of what one sees in the vitreous calls for much experience. In some cases the vitreous seems to be almost optically homogeneous, in others it is full of floating fibrillae, of membranes and particles, and yet it is perfectly transparent." Such being the opinion of one experienced in the use of the Gullstrand slit-lamp and of the corneal microscope, it is impossible to conclude with certainty that trauma to the vitreous or to the posterior capsule is responsible for the changes seen in the anterior layers of the vitreous or in the hyaloid membrane. Further detailed study, with the slit-lamp and corneal microscope, of the conditions obtaining in the vitreous after removal of the cataractous or sclerosed lens, is necessary before the origin of such changes can be attributed to any one operative procedure. In my series of 115 cases, operated upon by the Barraquer method, these changes were definitely less prevalent than I found them to be in eyes operated upon by other methods. While conclusions cannot be arrived at on such a limited series of cases, yet the fact is suggestive and worth fuller investigation. Such changes were found in 80 out of the 1,455 cases examined, with no disturbance in visual
acuity, and in 6 with some subsequent defect in vision. A further point of interest was the appearance in the pupil, clear to the naked eye, of fine dust-like pigmentary deposits; in some cases numerous, scattered, or in the form of a fine ring, visible only if the pupil were dilated or semi-dilated. These deposits were noted in 23 cases, but in one case only, in which the pigment was scattered over a fine cobweb-like membrane, was there any interference with vision. Such post-operative complications, found after very careful search, cannot detract from the value of the intracapsular operation; but any operative procedure, which tends to leave behind in the pupil anything, which may interfere with vision, falls short of the ideal method, which consists in "cutting the zonula and in drawing the entire cataract with gentleness to the exterior, without either pressure, stretching or violence, producing neither ectopias nor traumatism of the iris or of the ciliary body"(1).

The only technique at present followed, which approaches this ideal, is that of Barraquer. That many may fail in accomplishing
what Barraquer does is not to be wondered at, for the expert at the capsulotomy operation may never become skilled in the intra-capsular method; and again, he who has become familiar with the latter may never master phacoerisis. He who would attempt the removal of the lens with the erisiphac, must be reasonably skilled in the technique to be followed when complications arise during the expression of the lens by Smith's method.

The Apparatus

The apparatus used in the series of cases reported below was that devised by Messrs. Down Bros., London. It consists of a mercury chamber A, which can be raised and lowered on a ratchet; a fixed mercury chamber B; a mercury manometer with a centimetre scale ranging from zero to 60 cms., all fixed in a very compact and practical way on a portable wooden stand. The two mercury chambers are connected by means of a piece of stout rubber tubing, sufficiently strong to withstand the weight of 300 c.c. of mercury, namely, ten pounds. The fixed mercury chamber is provided with a good rubber cork, through which are bored two holes, for the passage of two small metal tubes, one a single-way, the other a two-way tube. These, of course, must fit accurately, as must also the rubber cork, otherwise the vacuum pressure would never be maintained. The single-way tube is connected with the manometer. From the two-way tube hang two pieces of rubber tubing provided with clips; one piece, D, opens to the air, while to the free end of the other piece, C, which should be about six feet in length, the erisiphac is attached. To make the vacuum pressure, all the clips are opened, and the chamber A is raised as high as it will go on the ratchet. When the mercury has drained from A into B, the clips on tubes C and D are closed and the chamber A is lowered, the movement of the mercury in the manometer showing the amount of vacuum pressure created in chamber B. Used in this way, the maximum vacuum pressure which could be obtained with a fall of 10 inches was 25 cms. Hg. This was found to be inadequate. By raising the fixed chamber B four inches on the stand, and raising and lowering A to the full extent of the connecting rubber tube, in this case 20 inches, giving a fall of 40 inches, a vacuum pressure of 45 cms. Hg. could be obtained. The clip on the connecting tube is then closed, and the chamber A hung on the ratchet.

I mention these details merely to show how easily minor defects in the apparatus were overcome. The reasons for their presence are obvious, and they could be obviated by increasing the length of the wooden stand, raising the fixed mercury chamber to a higher level and increasing the length of the ratchet.
Messrs. Down Bros. have now made an apparatus which will give vacuum pressures up to 60 cms. Hg. This differs from the original one merely in the length of the ratchet, the volume capacity of the chambers, and in the weight of mercury used.

The chambers have a cubic capacity of 550 c.c., the ratchet allows of a fall of 31 inches, and the weight of mercury used is 15 lbs. Rubber tubing, 8 mm. in diameter and of 2 mm. bore is used to connect the chambers.

The vacuum pressure having been made, passage to it is given by releasing the clip on the tube C. In actual use, however, the nearer the clip is to the free end of the tube, that is, to the erisiphac, the better, because, as will be explained later, it is very essential that the vacuum pressure be transmitted rapidly and instantaneously to the lens.

The Pressure.—The pressure to be used is scientifically worked out by Barraquer for each case, and it is found to vary from 45 to 70 cms. Hg., according to the elasticity of the lens and the state of maturity of the cataract. The degree of vacuum pressure to be employed depends also to a certain extent on the age of the patient, but it is only by the continual practice of making a careful preliminary examination of the physical conditions of the lens in each case, that the necessary experience will be gained, which will enable the operator to assess the proper vacuum pressure to be employed. The accuracy of Colonel Smith’s\(^{13}\) statement that the Barraquer operation does not seem applicable to Morgagnian and all classes of cataracts with liquid cortex, is not borne out by results. Intumescent cataracts formed quite a proportion of the cases operated upon, and burst capsules were not the rule with a pressure of 45 cms. Hg. That capsules burst is not so much due to excessive pressure as to speed and faulty technique on the part of the operator.

Instruments

The Knife.—Any type of von Graefe knife may be used, but a knife with a long handle and a long blade is much to be preferred. With such a knife the incision can be made in one sweep. The knives used were supplied by Down Bros., after the pattern of those made by Moria, of Paris; the shaft 10 cms., and the blade 3.5 cms. in length. A long handle, allowing of a long hold, gives the operator a much greater command of the knife and greater freedom in making the incision.

The Needle.—The needle used for the conjunctival suture is of the finest, just over fully curved on a diameter of 9 mm., and admitting only of the finest black silk being used. The suture is tied with forceps and not with the fingers to avoid any possible risk of sepsis.
PHACOERESIS

The Speculum.—Smith’s lid speculum was used, but is replaced after the incision has been made and the conjunctival suture inserted, by Fisher’s double hook. If Fisher’s double hook were used throughout the operation, fewer lenses would be extruded on completion of the incision, an accident which is not infrequently seen, when the speculum is used.

The Iris Forceps and Scissors.—For the peripheral iridectomy, if the operator wishes to make one, the iris forceps of von Hess and the iris scissors of Pascheff must be used if a fine button-hole is to be made.

The Erisiphac.—The erisiphac (erio = I draw, phakos = the lens) used was that devised by Greene, made by Müller, of San Francisco, the suction cup of which is circular and 5 mm. in diameter. The advantage of this instrument over that used by Barraquer lies in its pencil-like form, the shaft not being complicated by a thickened portion containing valves and a button for giving passage to the vacuum. In spite of this, Barraquer’s erisiphac must remain the better instrument, because with it the operator has sole control of the vacuum, while with Müller’s erisiphac he must depend on an assistant to open and close the tube giving passage to the vacuum. Some, using Müller’s erisiphac, control the vacuum with the foot on the rubber tube, but this is very unsatisfactory, because if the passage to the vacuum pressure is to be given rapidly and instantaneously, then the nearer the control is to the suction cup the more efficiently will this be carried out. Herein lies another advantage in the use of Barraquer’s instrument.

Light.—Reflected light is essential. Barraquer uses a fixed photophore, but any good type of electric torch will serve the purpose.

Preparation of the Patient

At first Barraquer’s method of preparing the patient was followed. The patient’s face is washed with soap and water, and dried with a piece of lint moistened with spirit or petrol. Between the lids an ointment containing 5 per cent. of the chlorides of euphthalmin and cocain is deposited by means of a glass rod. This produces the necessary dilatation of the pupil and anaesthesia of the cornea in from one to one and a half hours. When the pupil has dilated sufficiently, cocain hydrochloride 4 per cent. is instilled, also a drop of adrenalin, 1 : 1,000. Five minutes later this is repeated, and a subconjunctival injection of three minims of cocain 2 per cent. is given in the region of the upper corneal limbus. Ten minutes later the operation may be commenced.

Two factors brought about a change in the procedure followed in the preparation of the patient.
1. The potency of the euphthalmin failing, atropin 1 per cent. was used.

2. The instillation of adrenalin causing drying of the cornea, and thus dulling its lustre, a clear view of the iris margin could not be obtained during the application of the erisiphac to the lens.

To obviate this, 1:1,000 adrenalin combined with an equal part of cocaine 4 per cent. was injected subconjunctivally, two to three minims of the solution being used. It was found that this tended to cause dilatation of the pupil, more especially in the region of the injection, a factor which led to the cocaine-adrenalin solution being injected below the corneal margin, this tending to dilate the pupil downwards. The vertically oval shape of the pupil helped materially in applying the erisiphac to the lens, clear of the free margin of the iris.

Another factor which led to the cocaine-adrenalin solution being injected at the lower corneal limbus was the frequent occurrence of a subconjunctival haemorrhage, the result of the needle piercing a conjunctival vessel. This occurring at the upper corneal limbus gave rise to minor troubles on the completion of the section, blood escaping, for example, into the anterior chamber and blurring the edge of the iris. This made one hesitate to use a conjunctival suture in case more blood might enter the anterior chamber during its insertion.

The tedious preparation, which the patient has to undergo, tends to weary the busy operator, and it was realized that if phacoerisis was to be taken up seriously, a simpler method of preparing the patient had to be devised and carried out.

My plan at present is as follows: On the day of admission to the ward, if the eyes are reasonably clean, silver nitrate 1 per cent. is instilled, and the same evening a drop of atropin 1 per cent. The following morning the pupil is dilated, but to ensure that the dilatation will remain, after the section of the cornea and the iridectomy have been completed, atropin is instilled three hours before the operation. One hour before the operation an injection of morphia grs. $\frac{1}{2}$ is given. Anaesthesia of the cornea is obtained by the instillation of cocaine 4 per cent. four times, at intervals of five minutes. After the first instillation of cocaine, two or three drops of the cocaine-adrenalin solution are instilled or preferably injected subconjunctivally, at the lower corneal limbus as described above. If the pupil is sufficiently dilated, and if one instillation of adrenalin has blanched the conjunctiva, so that on making the conjunctival flap haemorrhage is unlikely to occur, then the use of the cocaine-adrenalin injection may be omitted. The patient is then placed on the table, and the conjunctival sac washed with perchloride of mercury, 1:5,000, any excess of perchloride lying
in the lower conjunctival fornix being carefully removed with a little sterile water or by means of a medicine dropper. This is important more especially if stronger solutions of mercury are used, because of the tendency of strong solutions to cause mercurial clouding of the cornea, which, however, usually clears up in four or five days without treatment.

Operative Procedure

The Incision.—A good, clean, large rather than small incision is a *sine qua non* in any cataract operation.

Having examined critically about 1,500 cases of cataract extraction, I am convinced that a small incision is more liable to cause eversion of the corneal flap than is a large one. I have seen several cases of everted flap follow a small, badly placed incision, but in no case have I seen such an accident occur where the incision has been large. The section can with safety occupy half the corneal circumference, and if the upper eyelid is carefully placed over the cornea when the operation is finished, and the eye kept closed by means of a moist pad of wool until the dressing has been applied, there is no danger of the corneal flap becoming everted. The eyelid must be kept closed, otherwise blinking on the part of the patient is liable to cause eversion of the flap.

That a small incision can cause eversion of the flap can easily be explained. When the lens, too big for the incision, engages the margins of the wound, tension is put on the cornea, the line of greatest tension lying on that part of the corneal surface stretching between the puncture and the counter-puncture, see Figs. 1 and 2. When pressure is applied with the hook to the lower part of the cornea, the lens, being held up at the line of greatest tension
a c b, causes the cornea to bulge, however slightly, below the line. As the lens moulds itself through the aperture between the upper or scleral edge of the wound and the line of greatest tension, a c b, the corneal flap is hinged outwards to allow more room for the lens to escape. The tension relieved, the cornea along a c b returns to its normal condition, and a thin groove c, concave outwards, forms along the line a c b. This groove acts exactly like a hinge on which the corneal flap tends to swing, and the tendency is for it to swing outwards. Even if no eversion occurs, and the flap is moulded back into place, a linear depression remains across the cornea for several days, evidence of the bending of the corneal surface during extraction. If the operator intends to hold the erisiphae in his right hand during the extraction, then the incision for the right eye should commence 1 mm. or more below the horizontal diameter of the cornea, the counter-puncture being similarly 1 mm. or more above the horizontal diameter. In the case of the left eye, the operator being as stated, right handed, the puncture will be above and the counter-puncture below the horizontal diameter. If the operator elects to use his left hand the conditions will be reversed.

If there is no likelihood of bleeding occurring, then a conjunctival flap should be made for the insertion of a conjunctival suture. A large conjunctival flap can be made by diverting the blade of the knife backwards towards the sclera, while finishing the section of the cornea, the size of the flap being controlled by merely turning the blade of the knife outwards and cutting out. The suture is then inserted and drawn clear of the corneal wound during the extraction of the lens.

Another method is to make the conjunctival flap first, dissecting a small crescentic flap off the sclerotic at the upper corneal limbus, inserting the suture before making the incision. The flap is stroked forwards on to the corneal margin, and the loop of the stitch drawn to one side while the incision is made and the lens extracted.

The advantages in this procedure are two:

1. If the patient is restless, the making of the flap and the insertion of the suture can be carried out without fear of the lens being extruded or of vitreous being lost, due to the patient squeezing his lids.
2. If bleeding should occur, one can instil adrenalin and wait till all bleeding has ceased, and so avoid those complications to which blood in the anterior chamber tends to give rise.

To my mind the disadvantage in making a conjunctival flap lies in the close proximity of the upper part of the incision to the base of the iris. I have never seen iris prolapse when the conjunctival suture has been used, but I have seen vertically oval shaped pupils
persist after its use, probably due to the fact that the periphery of the iris has been caught up in the wound at one point. The ideal procedure would be to keep the incision in the corneal limbus and to use the corneal suture of Suarez de Mendoza, or Kalt’s suture. Considering the usual unhealthy condition of eyelids in India, I have not so far used the corneal stitch, the risk of infection being too great. Barraquer lays great stress on the use of the corneal suture as being the best means of preventing iris prolapse.

If there is any reason to think that a conjunctival flap is to cause the slightest haemorrhage, the action of the adrenalin being insufficient, then the incision should be kept in the sclero-corneal junction throughout. The merest trace of blood in the anterior chamber will cause the novice in phacoerisis no end of trouble. It is far from a simple matter to remove blood from the anterior chamber and to keep it from re-entering, more especially if the iridectomy has given rise to bleeding. The manipulation necessary for the removal of the blood stimulates the iris to contract, and when the pupil is cleared it is usually found to be too small to admit of the erisiphaec being placed on the lens with safety. Even if perchance the pupil remain dilated, the chances are all in favour of more blood entering the anterior chamber during the performance of the iridectomy or later during the insertion of the erisiphaec itself.

I am convinced of the value of a good clean incision, and above all, of the necessity of making it slowly and gently, and if possible, in one movement, dropping the hand well down when the counterpuncture has been made, and sweeping the point of the knife upwards over the bridge of the nose, or over that point where the bridge of the nose meets the eyebrows. This, of course, is not always possible in deeply-set eyes, but should be aimed at. This slow sweeping incision plays an important rôle, not yet sufficiently recognized, in the prevention of iris prolapse.

The Iridectomy.—Wherein lies the value of an iridectomy? Some operators remove the lens in its capsule through a nondilated pupil and then perform iridectomy, usually the peripheral iridectomy of Hess. Why? To lessen the danger of the re-forming aqueous, in escaping through the wound, carrying iris before it, and giving rise to the bugbear of all cataract operations—iris prolapse.

Barraquer has reduced iris prolapse to 0.4 per cent. or less by performing the peripheral iridectomy of Hess and by using a conjunctival or corneal suture. Fisher, with a great experience in cataract operations, concludes that these two procedures are all important in the prevention of iris prolapse.

After a limited experience, I am gradually forced to the conclusion that, in phacoerisis at least, an iridectomy is unnecessary.
This presupposes, of course, that the operation has been carried out carefully and with every attention to detail in the matter of dislocating and tumbling the lens. Having come to this conclusion, against sound opposition, I departed from the technique laid down, and omitted the iridectomy in my later cases. Hoping that the narrow ring of iris of a dilated pupil would afford little obstruction to the escaping aqueous, and would not tend therefore to balloon upwards into the wound, I instilled atropin after the operation. This was done to dilate the pupil, which at the end of the operation was found to have contracted. The pupil tends to contract considerably after the removal of the lens, remaining in a semi-dilated condition at the end of the operation. It was found, however, on the third day that the pupil was smaller than it had been on conclusion of the operation. It is Barraquer's custom at the conclusion of the operation to apply a little 0.5 per cent. eserin ointment by means of a glass rod, placing the ointment in the lower conjunctival fornix. This part of the technique had previously been followed and was again returned to, save that a 0.5 per cent. solution of eserin was used in place of the ointment. One argued that although the contracted pupil would present a greater surface to the escaping aqueous, yet on account of the miosis and the increased tone in the sphincter pupillae, the iris would not yield and be forced upwards into the wound by the escaping aqueous. A further argument in favour of miosis is the fact, demonstrated by Thomson Henderson, that a contracted pupil helps to open the crypts in the iris and so facilitates the escape of aqueous humour from the anterior chamber into the veins at the root of the iris. Even if eserin were not used the pupil would tend to contract, the reason for this being a physiological one, namely, that when the aqueous is allowed to escape, the iris becomes hyperaemic and the pupil consequently becomes contracted (58).

The Insertion and Application of the Erisiphac to the Lens.— The incision completed, it was noted that the corneal flap lay in such close apposition to the edge of the wound, that slight pressure above was necessary to coax the cup of the erisiphac between the lips of the wound. Very frequently in passing the suction cup through the incision, the edge of the cornea became inverted. To correct this, some movement of the erisiphac across the wound was necessary, sometimes the movement freeing the inturned edge of the cornea, but often without success, in which case the application of the cup had to be proceeded with, a clear view of the margin of the iris not being obtained on account of the irregular corneal surface, the result of the inversion of the lip of the wound. With a tinge of blood in the anterior chamber and an inverted corneal flap, phacoerisis became impossible unless one raised the corneal flap on the back of the erisiphac and looked directly at the upper
segment of the iris to make certain that no part of the iris became ensnared, while placing the suction cup on the lens. If a clear view is to be obtained through the cornea, then the even contour of the latter must not be disturbed; the slightest wrinkle or unevenness means a certain amount of blurring of the margin of the iris. It was found that the difficulty in coaxing the suction cup in between the lips of the wound, with its disturbing effects, could be obviated by simply using a flat iris repositor with which to raise the corneal flap. The flap raised, the erisiphac is gently slipped beneath the cornea, which is then allowed to rest on the back of the cup, no irregular bending or curving of the corneal surface occurring. A good view of the lower pupillary margin is thus obtained against the lens capsule, and the danger of ensnaring the iris is avoided. Barraquer states that should the pupil contract, the application of the erisiphac is rendered difficult, yet with a little skilful manipulation the iris can be avoided by edging one part of the cup under the iris. Should iris get between the lens and the suction cup, a complication, which one at once recognizes as having occurred from the sense of resistance felt the moment any attempt is made to tumble the lens, then the passage of the vacuum should be interrupted, air allowed to enter the cup, the hold on the lens loosened, and a fresh hold taken.

Accurate apposition of the suction cup to the lens capsule is of course essential. The angle at which the suction cup is placed on the shaft of the erisiphac should be carefully studied; also the angle which the shaft will make with the plane of the cornea when the instrument has been applied. The operator should practise holding the erisiphac at the proper angle by approaching it to the corneal surface. It is surprising how much nearer to the perpendicular the proper angle lies than is at first imagined, if Müller's erisiphac is used. Accuracy can be acquired by placing the cup of the detached erisiphac on an anaesthetized cornea. The instrument is held exactly as one holds a von Graefe knife when making a corneal incision, lightly and gently. A long hold on the instrument, which one learns to take with practice, gives greater freedom of movement, and minimizes any danger which may arise from movement of the eye by the patient. The suction cup is placed on the lens, theoretically without the application of any pressure, the signal is given and the assistant gives passage to the vacuum pressure. It is important for various reasons that this be done rapidly and firmly. If the vacuum pressure is allowed to pass slowly, and the suction cup has not been applied accurately to the lens capsule, air will be drawn into the erisiphac. There is at this moment grave danger of the inrushing air dislocating the lens backwards into the vitreous chamber. The explanation of this is not difficult to appreciate when one remembers that a vacuum
pressure of well over half an atmosphere is being employed. When the erisiphac has not been applied properly, and passage is given to the vacuum, air at this pressure is drawn suddenly from the open anterior chamber into the suction cup through a space probably not much more than one millimetre wide, but large enough to prevent the rushing air from drawing the lens up towards the suction cup. The edge of the suction cup being solid, and for the moment fixed, this sudden application of pressure to the lens surface, due to the stream of air rushing towards the suction cup, ruptures the delicate zonular fibres, and the lens, now free, is driven through the hyaloid membrane deep down into the vitreous. Any slight inaccuracy in the application of the suction cup is overcome if the passage to the vacuum pressure is given rapidly, the lens thus being drawn up towards the cup. Any gross inaccuracy, however, will undoubtedly result in the dislocation of the lens, if the latter is not actually driven by the force of the passing air deep down into the vitreous. Herein lies the most disconcerting complication which may occur. The air rushes into the suction cup and the lens disappears instantaneously into the depths of the vitreous. It is not the slow motion of the dislocated lens in the intracapsular operation, sinking slowly from view, or frequently remaining in the pupil, allowing of its removal with the spoon. The lens simply flashes out of sight and is lost. For this reason, silence in the operating theatre is essential; no hissing of steam from sterilizers, no noisy primus stoves, or running taps can be allowed. The careful and wary operator will be all attention, listening for the slightest sound, while passage is given to the vacuum, and will continue in that alert state of hearing until the lens has been removed from the eyeball, the slightest or faintest hiss of passing air being the signal for instantly shutting off the vacuum pressure, and thus avoiding dislocating the lens with resulting loss of vitreous. If the operator does not feel sufficiently confident in his ability to re-apply the erisiphac, he ought then, if the lens is still in the pupil, to finish the operation by Smith’s method. Another point in favour of giving rapid passage to the vacuum is that with light traction the zonular fibres break at their ciliary attachment, while if the pressure is applied with greater force, and more rapidly, the zonular fibres break nearer the lens periphery.

Barraquer\(^{(1)}\) points out that with slow stretching the ciliary region becomes traumatized, and he noted on examination with the corneal microscope that remains of the zonular fibres became incarcerated in the lips of the wound, and these, with incarceration of the angles of the coloboma, gave rise to irido-cyclitis, which disturbed the post-operative course of the case.

Once the lens has been grasped by the erisiphac, then, if the
hold is long and light, it matters little whether the patient moves his eye about or not, the erisiphac will merely follow the eye in its movements and do no damage, so long as no effort is made to check the eye movements by means of the erisiphac. The erisiphac should be so held that it can be turned through an angle of 180 degrees, the greater part of the movement being carried out from the wrist, any rolling motion between the fingers being minimal and kept as a sort of reserve for the completion of the turn should the wrist movement be found insufficient.

The Movements to Tumble and Remove the Lens.—It is in the performance of these movements, the initial stages of which play an important part in the success or failure of the operation, that, for inexplicable reasons apparently, failure generally occurs.

The tumbling movement may be well advanced when the erisiphac slips, air enters, and the vacuum pressure is lost. Again, the lens may have been successfully tumbled, but when engaging the incision, the lens seems to drag behind and finally slips from the suction cup, and the beginner, not without reason perhaps, loses confidence in an instrument the use of which is fraught with so many complications.

Wherein lies the error in technique? The error lies first in the initial movement, and then, having tumbled the lens, in erroneously pressing it against the posterior surface of the cornea, hoping that by doing so the lens will be kept in contact with the suction cup and not be allowed to slip. The rationale of the tumbling movement becomes clear when the physical conditions existing in the eye are considered.

To simplify matters let us first consider how the lens would react to certain forces applied to it, were it a solid body. The posterior convex surface of the lens is in perfect juxtaposition with the anterior surface of the vitreous, lying in the patellar or hyaloid fossa. Any force tending to pull the lens directly upwards, in the direction \(X \) in Fig. 4, would be strongly resisted on account of the cohesion existing between two perfectly smooth surfaces. Any force in the direction \(Y \) would produce no movement of the lens, and would, if excessive, result in the rupture of the lens capsule or of the hyaloid membrane, or of both, with vitreous loss. To cause the solid body \(L \) to tumble, that is to cause it to revolve in the hyaloid fossa without any tendency to remove it from the fossa or to apply pressure through it on the fossa, force must be applied at \(Y \) in a downward direction and at \(X \) in an upward direction, Fig. 5. Forces so applied will cause the solid body \(L \) to take up the positions seen in Figs. 6 and 7. The forces, continuing to act perpendicularly to the plane of this solid body \(L \) will pass through a horizontal position and finally, when the tumbling has been
completed, become inverted, Y acting upwards and X downwards, Fig. 8.

Now imagine a flat circular suction cup on a handle applied over the centre of the anterior surface of such a solid body L, which measures 10 mm. in its transverse or horizontal diameter, and 5 mm. in its antero-posterior diameter. The distance from the centre of the suction cup then, to any point on the periphery of this solid lens would measure 5 mm., and from the centre of the cup to any point along the posterior surface of this solid lens would measure roughly 5 mm. Now, to cause such a solid body to tumble, all that would be necessary to bring the forces X and Y into action, would be to roll the handle of the suction cup between the fingers, remembering that the centre of rotation is the centre of the cup and therefore must not move if surrounding structures are not to be damaged. It is probably an attempt to perform some such movement as this that is the cause of many inexplicable failures.

Now consider the changes which occur in the normal lens when the vacuum pressure passes along the erisiphac to the suction cup. The lens diminishes in size in its transverse diameter, which tends to, and should rupture the zonular fibres, if the vacuum pressure has been applied instantaneously and is of the correct force. The nucleus of the lens also is drawn upwards towards the suction cup, see Figs. 9 and 10. It is most important to recognize this latter point. Remembering that the lens is not a solid body throughout, that its tranverse diameter is 9 to 10 mm., while that of the suction cup is 5 mm., it is readily seen that the application of the forces in the directions X and Y fails in practice. Were the lens solid, the theory would apply and the forces would be represented as acting through diametrically opposed points on the periphery of the suction cup, and a mere rolling of the erisiphac between the fingers would suffice to tumble the lens. The lens, however, is not solid, but consists of a solid nucleus lying in a fluid medium; the forces X and Y, therefore, acting through diametrically opposed points on the suction cup, act, not on the lens itself, but on the nucleus, now lying in close apposition to the suction cup. Any attempt to tumble the lens in such a manner will result in:

1. The suction cup being pulled off the lens capsule, the lower periphery of the lens impinging on the posterior surface of the cornea.
2. Bursting of the lens capsule, or
3. Pulling the lens out of the hyaloid fossa, with rupture of the hyaloid membrane and consequent vitreous escape.

All are serious complications, to avoid which every endeavour must be made.
Having grasped the facts so far stated, one can now consider the movements which are necessary to tumble a lens, which is not solid, but consists of a solid nucleus in a more or less liquid medium. The suction cup having control of the lens, really through the medium of its solid part, the nucleus, the first movement is to pass the cup upwards towards the upper pupillary margin, putting no downward pressure on the lens, the latter taking up a position such as is shown in Fig. 11. If the pupil is not fully dilated this movement in the plane of the iris will bring the edge of the suction cup under the iris. This slight movement, about 1 mm. or less in extent, depending on the fluidity of the lens, brings the nucleus of the lens over the point where the pressure must be applied to cause the lens to rotate in the hyaloid fossa. The second movement is a downward motion in the direction Y, Fig 11, one might almost say, at the risk of being misconstrued, a dipping down of the entire lens nucleus by means of the erisiphac into the hyaloid fossa, i.e., in the direction of Y, Fig 11. At the same time the erisiphac is turned from the wrist so that a force X acts about the middle of the lens, transmitted through the lower periphery of the nucleus, and aiding, though slightly, the force Y in sweeping the lower periphery and posterior surface of the lens out of the hyaloid fossa. As the erisiphac is slowly and gently turned, the force Y gradually assumes a horizontal and finally an upward direction, the upper periphery of the lens, carried along on the cup, gliding into the hyaloid fossa, without any pressure on the hyaloid membrane. This causes the lower periphery of the lens to approach the posterior surface of the iris, obliterating the posterior chamber, without impinging in any way against the posterior surface of the cornea in the region of the sclero-corneal margin, Figs. 12 and 13. The lens thus tumbled, the third movement is a sweep upwards towards the upper conjunctival fornix. In no case should the lens be pressed against the posterior surface of the cornea, under the impression that by so doing any tendency for the lens to slip or be dragged off the suction cup as it engages the incision, can be prevented. There is ample room for both the lens and the cup between the hyaloid membrane and the cornea, and the aim should be to glide the posterior surface of the lens out of the hyaloid fossa, till the posterior surface of the lens comes to lie against the posterior surface of the cornea without any more pressure of the lens against the cornea than is caused by the weight of the corneal flap.

In every stage of the delivery of the lens, from the first to the last, the first essential is to proceed slowly, deliberately, gently, holding the erisiphac lightly, and thus avoiding any jerking motions, which may be imparted to it by sudden movements of the eye by the patient. The erisiphac will not leave the lens so long as no attempt is made to steady an unruly eye with it.
PHACOERISIS

There is a great tendency to hurry the final movement; this should be avoided. There is nothing to be gained by speed and the complications which one does not want to see may occur at the very end of what, with less speed, would have been a successful operation. These complications are; rupture of the hyaloid membrane with vitreous loss; burst capsule due to the lens impinging against the edge of the wound and the capsule being cut; iris prolapse due to the iris following the lens in much the same way as a curtain will follow a closing door.

The Toilet of the Wound

After a properly performed Barraquer operation, toilet of the wound does not enter into the technique. Upon removal of the lens, the conjunctival suture is tied, if such has been used, the eye is gently closed and a pad, smeared with a little ungt. hydrarg. oxidi flavii 0.5 per cent., or simple sterile vaseline is applied to the lids. This is covered with a small piece of wool and the eye bandaged. Before the assistant closes the upper lid, and the assistant, not the patient himself, should close the lid, the operator satisfies himself that the pupil is circular, clear and black.

There should be no question of replacing the iris. That this should be so becomes evident when one watches carefully what happens to the upper half of the iris during a properly performed Barraquer operation. The upper pupillary margin of the iris tends to adhere to and follow the lens as it tumbles, and in this way is spread out flat on the hyaloid membrane, to which it will adhere unless pulled off by rough and speedy delivery, Figs. 14—18. The re-forming aqueous floats the iris free from hyaloid membrane. I have seen the iris adherent to the hyaloid membrane at the first dressing, but in every case it floats free. To lay the upper segment of the iris flat on the hyaloid membrane it is necessary to tumble the lens fully, otherwise the edge may adhere to the lens and become stripped off with it during delivery. That there should be no need to replace the iris, marks a very important advance in the technique of intracapsular operations for the removal of the cataractous lens, for, as an experienced operator says: "The toilet of the iris is of the utmost importance, chiefly because of the large coloboma and adhesions of the iris to the upper sclero-corneal margin."(30) If the iris has become ensnared in the suction cup and has been pulled out of the wound, air is allowed to enter the cup and the erisiphac freed from the lens, which is lifted off the iris. The latter is then replaced, or, if torn, the torn part is excised and the edges carefully replaced. Such an accident of course cannot happen if the pupil has been properly dilated and the suction cup accurately applied to the lens, care being taken that the iris margin has not been ensnared.
The Dislocated or Couched Lens

Should a lens be couched during the operation a complete iridectomy should be made, atropin 1 per cent. instilled and the eye bandaged for five or six days. Normally a dislocated lens, after Smith's operation, floats into the pupil on the third day, but after a Barraquer operation it is seldom seen before the sixth day. The object in completing the iridectomy, is to allow of the lens being removed easily with the spoon when it appears in the pupil, an iridectomy and a dilated pupil facilitating the delivery with the spoon. In using the spoon the latter must be passed behind the lens with the least possible impact on its periphery, any impact on the lens causing it immediately to disappear from view, when the eye will have to be bandaged again for a further period of five or six days. This sudden disappearing of the dislocated lens is probably due to the fact that there has been considerable vitreous loss, with resulting excess in secretion of aqueous humour and lowering of the specific gravity of the intraocular fluids.

Post-Operative Treatment

Both eyes, if operated upon are bandaged for six days, at the end of which period the first dressing is done, and the eyes again bandaged for a further period of two days. On the eighth day, if no post-operative complications have occurred, a shade is given, and two days later the patient is discharged. If one eye only has been operated upon, then at the first dressing the sound eye is left unbandaged.

On the eighth day eyes are carefully examined and vision taken. Sometimes the patient, content with the results, takes his leave after the first dressing has been done. On the tenth day, if the patient is still in hospital, the eye is again examined with the corneal loupe, vision again taken, and the patient discharged.

Standard of Visual Results

Amongst an ignorant and illiterate people to dogmatize about visual results is not possible. The difficulty in assessing visual results in the cases seen at Shikarpur can only be fully appreciated when it is remembered that six or seven different languages are spoken, and that at the height of the season there are from 500 to 600 cataract cases in the wards. These wards are temporarily erected shelters consisting of pieces of matting laid across branches of trees, supported on hastily built brick columns.

The simplest of tests must be employed, otherwise the object aimed at is defeated, and the man who can count fingers at six yards stoutly affirms that he cannot count anything on the test dot card at six feet. The first test then is merely counting fingers at six to eight feet, and it is found that the patient, who can count
fingers readily and differentiate the thumb from the fingers at this distance, has reasonably good vision, varying with glasses, when this has been tried, from 6/12 to 6/6, depending to a great extent on the intelligence of the patient. When vision is described as

very good (v.g.), it means that this test has been conformed to. If very good plus (v.g.+) is noted against the visual result, it means that the patient possessed remarkable visual acuity when tested, giving ready and correct answers in counting fingers or dots at greater distances than eight feet. When vision is noted as v=h.m., it means that the patient could see hand movements from three to five feet. Vision=g, denotes counting fingers from three to four feet.
To demonstrate the difficulty which confronts the operator in India who would endeavour to obtain end results with regard to vision, post cards were printed, dots on one side ranging from 6/60 to 6/4, and on the reverse full instructions in Urdu as to the purpose of the card and the method of its use. These cards were stamped, addressed and given to the more intelligent of the patients, who were asked to fill up the card and return it in three months' time. It is not a matter of much surprise that up to date not a single post card has been returned, even from those intelligent patients, who could talk English and Urdu fluently, and to whom the purpose of the card could be fully explained.

The Indian is utilitarian in his ideas; he cannot see what benefit can accrue to himself from filling up a card, and if he is satisfied with the result, after counting the dots he will probably throw the card away; if not satisfied he will worry the unfortunate operator or someone else, to know why his vision is not what he hoped it would be. That this difficulty with regard to visual end results is not confined to Sind, but is the rule in India, is brought out in an article by Major F. F. Strother Smith, I.M.S.60 who attacked the problem in still another way. He says: "Letters written to the homes of hospital patients I found were useless, either the letter was not delivered, or, if delivered, was looked upon as a police ruse to entice him to Allahabad for some mysterious reason or other, or else the patient objected to spending the money on his journey." He adds further: "Anyone who has ever tried to fit a number of the latter patients (ignorant villagers) with glasses will realize the difficulty of getting an accurate estimate of the amount of vision they possess. It is difficult enough to estimate his refraction by retinoscopy, but when the actual lenses estimated are put before his eyes and he is asked to count Snellëns's dots he will refuse to count in the hope that by so doing you will give him better glasses." One can readily understand how impossible it is, with the class of patient with whom this report deals, to obtain accurate end results four to twelve months after the operation. Amongst the more intelligent and educated classes of patient, end results may be obtained, and work in this way is being done60. But it must be remembered that in India patients travel hundreds of miles by road and rail for treatment, and it is expecting much to hope that a post card or letter will persuade that patient to repeat the journey, merely to satisfy the keen surgeon who is striving to collect visual end results. The ophthalmic surgeon in Europe and America should realize how relatively easy it is for him to obtain end results, and that if his colleague in India does not produce these, it is not from want of earnest endeavour on the part of many to obtain them. The standard of success demanded by the patient will be an acuity of vision which allows him to perform his work
Phacoerisis

efficiently, and this will be a slightly variable one, since much will depend upon the nature of the work[17]. The majority, probably 95 per cent., of the patients seen, are illiterate. If such patients can see sufficiently well to do their daily work, which is mostly of a primitive agricultural type, or see the faces of their grandchildren, whom up to the date of operation they have not been able to see, little more is to be gained by the use of glasses.

Details of Post-Operative Results

The 115 cases, the post-operative results of which I propose to detail, form my first series of cataract extractions performed by the Barraquer method.

I started \textit{de novo}, having received no instruction in the technique to be followed. My results may encourage others to persist in their efforts to master the difficulties in technique, and to become reasonably expert in what is, I believe, undoubtedly the only operation at present practised, which can claim to extract the lens without traumatism to intraocular structures.

Fifteen cases were failures, in the sense that the operation had to be completed by some other method, but an analysis of the results of these failures will show that, with care and judgment, a failure with the erisiphas does not necessarily mean a lost eye. These failures are naturally grouped amongst the first 25 per cent. of cases. If the beginner can only persuade himself that, once the suction cup has slipped, to continue with the erisiphas is to court disaster, and does not therefore persist in trying again because the lens lies so temptingly in good position in the anterior chamber, then lost lenses will not appear in his list of complications. Barraquer definitely states that the only contraindication in phacoerisis is a dislocated lens. With Colonel Smith, he believes that lenses can be removed in all stages of immaturity. Success can only come by practice and by the careful study of those movements in the carrying out of which one tends to fail. One is not blind to the fact that to some the operation will present difficulties hard to master, while to others, with practice, it is merely a piece of surgical technique no more difficult to carry out than the intracapsular operation. To persist in an operation which gives less favourable results than are to be obtained by old and tried methods would be unwise; to condemn without honest endeavour to master the technique is foolish, because the operation has proved itself a brilliant success in Barraquer's hands.

Reviewing 249 cases of cataract extraction with capsulotomy, done by Professor Meller during 1919 to 1921, Dr. Hans Barkan[18] states: "The method that gives the great majority of patients 20/20 to 20/40 and a small minority poorer vision than this, will remain
the method till something better than Smith or Barraquer arrives," and he concludes that "intracapsular procedures must stand the test of comparison with the combined extraction performed on patients selected with equal care." He then submits a list of those conditions, the presence of which in the patient, according to Professor Meller, renders the case one of complicated cataract. To consider such a list in the case of the patients seen at Shikarpur, would result in the great majority of the cases being classed as complicated cataracts. The critic must remember that the cases, which form the subject of this report, were not selected with that care which is exercised in European clinics, but were submitted to operation as soon as they reached hospital, being sent direct from the out-patient department to the operating theatre, without preparation of any description. The last 15 or 16 cases which were done towards the end of the season, might be said to have been prepared in that they were detained one night before operation, and had silver nitrate one per cent. and atropin one per cent. instilled on the evening of admission. The Indian does not understand why he should require any preparation for operation, and if he is not operated upon on the day of his arrival he begins to fret. If the following morning does not see his case dealt with, he fancies that the surgeon has little interest in him, and off he goes to a hospital where he will be dealt with on arrival. In spite of these adverse conditions, I consider that the results obtained compare very favourably with the results obtained by other methods, under the same or better conditions.

Analysis of Cases in which Phacoerisis failed, the Operation being finished by some other Method.

The number in brackets is the patient's number in the hospital cataract book. It serves to identify the patient, and is useful for purposes of reference when the same patient figures in more than one list.

1. (265)—The suction cup slipped after tumbling; removed by Smith's method; no complications; pupil clear, circular. black. \(V = v.g.\)
2. (267)—The suction cup slipped after tumbling; removed by Smith's method; iris prolapse; pupil circular and clear; clouding of the cornea due to perchloride of mercury. \(V = g.\)
3. (274)—The suction cup slipped while the lens was engaging the wound; removed by Smith's method, the capsule bursting, but being removed entire with the capsulotomy forceps; pupil circular; a slight amount of cortex left behind. \(V = g.\)
4. (317)—The suction cup was inaccurately applied, air rushing in dislocating the lens into the vitreous chamber. In this case the lens never again appeared in the pupil, the patient being detained for two weeks. This was a beautiful eye with a circular, clear, black pupil and with remarkably acute vision. \(V = v.g.+\)
5. (319)—The suction cup slipped; lens removed by Smith's method; no complications; pupil clear, circular and black. \(V = v.g.\)
6. (321)—The suction cup slipped; lens removed by Smith's method; no complications; pupil circular, clear, black. \(V = v.g.\)
7. (410)—The suction cup slipped; lens removed by Smith's method; no complications; pupil circular, clear, black, a small piece of iris remained caught up in the wound. \(V = v.g.\)
8. (416)—The suction cup slipped; lens removed by Smith's method; no complications; pupil circular, clear, black. \(V = v.g.\)
9. (456)—The suction cup was inaccurately applied, air rushing in dislocating the lens into the vitreous chamber; the lens was removed with the spoon on the sixth day. The patient went off two days later, no visual result being obtained.
10. (611)—The suction cup slipped; lens removed by Smith’s method; no complications; pupil circular, clear, black. V=v.g.
11. (612)—The suction cup slipped; lens removed by Smith’s method; no complications. V=v.g.
12. (702)—The suction cup slipped; lens removed by Smith’s method, the capsule bursting but all of it being removed with the capsulotomy forceps. A case of strabismus. V=doubtful hand movements.
13. (703)—The suction cup slipped; lens removed by Smith’s method; no complications; some haziness of the cornea due to perchloride of mercury. V=g.
14. (1393)—Iris ensnared in the suction cup. The erisphæc was gently freed from the lens and the lens removed by Smith’s method, a small piece of iris remained caught up in the wound. V=v.g.
15. (11)—A case of traumatic cataract in a young man. Numerous posterior synechæ were broken down in tumbling the lens, but in breaking these adhesions the pressure used in this case was 41 cms. Hg. It was felt that had a vacuum pressure of greater intensity been employed the lens could have been removed with the erisphæc. The result was very good, the pupil being circular and clear, but corneal nebulæe interfered with vision. V=g.

Analysis of the above 15 Cases.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No complications</td>
<td>8</td>
<td>V=v.g. in all cases.</td>
</tr>
<tr>
<td>Iris in the wound</td>
<td>2</td>
<td>V=v.g. in both.</td>
</tr>
<tr>
<td>Burst capsules</td>
<td>2</td>
<td>V=g. in one.</td>
</tr>
<tr>
<td>Iris prolapse</td>
<td>1</td>
<td>V=g. due to mercurial clouding of the cornea.</td>
</tr>
<tr>
<td>Couched—recovered</td>
<td>1</td>
<td>V not obtained; patient leaving hospital.</td>
</tr>
<tr>
<td>Couched—not recovered</td>
<td>1</td>
<td>V=v.g. +</td>
</tr>
</tbody>
</table>

In two cases therefore, was vision not improved; one in a squinting eye, the other in the case of the couched lens recovered with the spoon, in the latter case the visual result was not obtained, the patient leaving hospital before vision was taken.

Detailed Analysis of Unsuccessful Barraquer Operations—8 Cases.

1. (413)—Burst capsule, all removed with the capsulotomy forceps. Iris prolapse with subsequent irido-cyclitis due to incarceration of the iris. Keratitis with considerable pannus formation. V=h.m.
2. (414)—Keratitis with pannus formation which interfered with vision. V=h.m.
3. (644)—Developed plastic irido-cyclitis. Patient had a dirty conjunctival sac, and was suffering from pyorrhoa. V=h.m.
4. (676) 5. (677). A case of double cataract. Both beautiful eyes with clear, circular, black pupils. The right eye showed a fine ring of pigment deposit, only seen while the pupil was semi-dilated and after careful examination with the loupe. Fundus examination revealed double optic atrophy. V=no perception of light.
5. (753)—A beautiful eye; pupil circular, clear and black. Had a slight central corneal leucoma. Tension=38 mm. Hg. ‘Tension of the other eye (R) was 100 mm. Hg. A case of incipient glaucoma. V=h.m.
6. (8) 8. (9)—A case of double cataract, in a Mohammedan woman, who gave her age as 100 years. Her son who brought her gave his age as about 60 years, so the patient’s age was put at 85 years. No complications occurred during or after the operation, both eyes, on conclusion of the operation, showing circular, clear, black pupils. The anterior chamber, however, did not re-form, little or no aqueous being secreted in the left eye and a very little in the right eye. The wounds healed normally, pupils remaining circular, but the cornea being collapsed, more markedly so in the left, where there was no attempt at secretion on the part of the ciliary processes. V=h.m.

An analysis of these unsuccessful cases shows that Nos. 4, 5, 6, 7, and 8 owe their failure to complications unconnected with the operation.

Nos. 4 and 5. Double optic atrophy.
No. 6. Incipient glaucoma with corneal leucoma.
346 THE BRITISH JOURNAL OF OPHTHALMOLOGY

Nos. 7 and 8. Senility, with defect in the secretory power of the ciliary processes.
In No. 1. The failure is directly due to the operation, the iris being incarcerated in
the wound. In this case only did a complication occur on the table, namely, a burst
capsule.
In Nos. 2 and 3. The failure is indirectly due to the operation, the latter probably
lighting up latent septic foci.

Complications in all Cases of Completed Barraquer Operations.

A.—Complications arising on the Table.
1. Burst Capsules = 6 per cent.
 1. (323)—All the capsule removed; pupil circular, clear, black. V=v.g.
 2. (413)—All the capsule removed; complicated further by iris prolapse and pannus
 formation, developing later a plastic iritis. Already classed amongst the un-
 successful cases. V=h.m.
 3. (464)—All the capsule removed; some cortex left behind; pupil finally clear and
 circular. V=v.g.
 4. (647)—All the capsule removed; pupil circular and clear. V=v.g.;
 5. (648)—V=v.g. Ditto.
 6. (675)—V=v.g. Ditto.

2. Vitreous Loss = 3 per cent.
 1. (411)—Slight loss due primarily to a small incision; pupil circular and clear.
 V=v.g.
 2. (1322)—A bad patient; squeezed out a small amount of vitreous after the operation
 had been completed; pupil circular and clear. V=v.g. + .
 3. (1415)—A bad patient; squeezed out a small amount of vitreous after the operation
 had been completed; pupil circular and clear. V=v.g.
 In no case did vitreous appear before the lens had been removed, and usually such
 loss occurred after the completion of the operation, due to some indiscretion on the
 part of the patient, such as squeezing of the lids. To this cause two of the vitreous
 losses are due, the third being the result of faulty technique, a small incision.

3. Burst Capsules associated with Vitreous Loss = 1 per cent.
 1. (1339)—In this case much flocculent cortex was left behind, no attempt being
 made to remove it on account of vitreous loss, the vitreous following the removal
 of the capsule. On the tenth day a linear extraction was done and the greater part
 of the cortex removed, a slight amount being left at the upper margin of the pupil.
 V=g. + .
 The grave nature of this double complication has previously been referred to(19).

4. Ensnaring of the Iris by the Suction Cup = 2 per cent.
 1. (692)—A small piece of iris was caught up in the suction cup and slightly torn
 during the tumbling of the lens. A trace of blood was left in the anterior chamber,
 which cleared up. V=v.g.
 2. (14)—In this case the ensnared piece of iris was badly prolapsed, the prolapse
 being cut off and the edges replaced. Considerable haemorrhage occurred into the
 posterior chamber, which cleared up, but tags of iris in the pupil interfered with
 vision. V=g.

B.—Complications present at or after the first dressing.
1. Iris Prolapse = 3 per cent.
 1. (413)—Peripheral iridectomy was performed. Already referred to under burst
 capsule and classed amongst the unsuccessful cases.
 2. (642)—Peripheral iridectomy was performed. The iris prolapse was cut off and
 a conjunctival flap made covering the upper corneal limbus. V=g.
 3. (1187)—Iris slightly torn, due to restlessness on the part of the patient, while the
 peripheral iridectomy was being made. The iris prolapse was very slight and required
 no treatment. V=v.g.
2. *Iritis* = 3 per cent.

1. (413) — Already referred to and classed amongst the unsuccessful cases.
2. (644) — Already referred to and classed amongst the unsuccessful cases. This case developed a plastic iritis. Conjunctival sac was very dirty and the patient was suffering from pyorrhoea in addition.
3. (1335) — This case developed a serious iritis, which cleared up leaving a thin band at the upper periphery of the pupil. \(V= g. \)

3. *Keratitis* = 1 per cent.

1. (414) — Already referred to and classed amongst the unsuccessful cases.

Summary of Results

1. Successful cases, without complications \(V=v.g. \) = 78
2. Successful cases, with complications \(V=g. \) = 10
3. Unsuccessful cases, due to operation \(V=h.m. \) = 3
 or not due to operation \(V= \) less = 5

Total = 100

Complications, due to the operation, occurred in 17 cases. These complications might be arranged, as below, according to their effect on the visual result.

1. Not interfering with vision. \(V=v.g. \) or more.
2. Interfering partially with vision. \(V=g. \) or more.
3. Interfering grossly with vision. \(V=h.m. \) or less. Classed as failures.

Complications.

<table>
<thead>
<tr>
<th></th>
<th>(V=v.g.) or (v.g.) +</th>
<th>(V=g.) or (g.) +</th>
<th>(V=h.m.) or (less.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Burst capsules.</td>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nos. 323.</td>
<td>648.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nos. 464.</td>
<td>675.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nos. 647.</td>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Vitreous loss.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nos. 411.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nos. 1322.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nos. 1415.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nos. 1339.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Ensnared iris.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 693.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 14.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Iris prolapse.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 1187.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 642.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 1335.</td>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 413.</td>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 644.</td>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nil.</td>
<td>Nil.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nil.</td>
<td>No. 414.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Causes of Non-Improvement in Vision

Irido-cyclitis: 413 and 644, following a burst capsule with iris prolapse.

Keratitis: 414, with pannus formation.

Optic atrophy: 676 and 677.

Corneal leucoma: 753, with incipient glaucoma.

Failure in secretion of aqueous humour: 8 and 9.
Reviewing results in those cases in which complications have occurred, it is evident that the intra-ocular structure, injury to which is the most prevalent cause of defective vision, is the iris. Any injury to the iris must be regarded as serious. The slightest damage to this structure may give rise to a series of the gravest complications. A torn iris, a tag incarcerated in the wound, a prolapse preventing healing of the wound, may set up a simple iritis, yielding to treatment but always liable to recur on exposure to cold, or should the patient become run down in health. It may be nothing more than a simple recurrence of pain in the eye, with lacrymation, but sufficient to cause intense discomfort to the patient. Or, more serious still, the incarcerated tag of iris, forming a suitable pathway by which organisms may enter the eye, iridocyclitis is set up, followed, it may be, by occlusion of the pupil and resulting loss of vision. Or again, a more virulent infection results in the eye being lost on account of sepsis. It is little wonder then that Fisher refers to iris prolapse as “the bugbear of all cataract operations.”

Amongst the class of patient dealt with also, pyorrhoea alveolaris is the rule, and cannot be dealt with as one might wish previous to operation. It is remarkable that the percentage of post-operative complications arising from the septic condition of the teeth and gums met with amongst these patients is so small. Inflammation of the substantia propria of the cornea occurs as a result, and inflammation in the interior of the eye due to diffusion of toxins through Descemet’s membrane. In non-suppurative iridocyclitis, such as is associated with some septic trouble, e.g., pyorrhoea alveolaris, the toxin in the aqueous diffuses through Descemet’s membrane, and then sets up an inflammation in the deeper layers of the cornea.

Complications may be due to a bad patient or to faulty technique. The patient may be unruly on the table, he may squeeze his lids under the bandage—a cause of iris prolapse—or he may actually remove his bandage, and with dirty fingers retract the lids to allow his relatives to report on the condition obtaining, and incidentally test his vision. Faulty technique will give rise to many complications, most of which can be avoided by going through the various stages of the operation slowly and carefully.

The worst complication one can have is iris prolapse, and this because it requires a second operation for its efficient treatment. What are the factors which lead to iris prolapse, and what can be done to prevent it? If those faults in technique which tend to cause iris prolapse and possibly other complications also, could be regarded as arising from one prime fundamental error, and could this major fault be designated by one word, then that word would be speed. If prolapse of the iris is to be prevented then, the
incision must be made slowly, if possible in one sweep, the blade of the knife being kept in the plane of the iris all the time, so that there will be no tendency for the wound to gape and allow the aqueous to escape too freely. If the bulk of the aqueous has been lost before the section has been completed, then the iris will float in front of the blade and have to be cut or its free margin will curl up over the back of the blade, and follow the blade in between the lips of the incision as it cuts out. Further, the lens ought to be tumbled, as previously mentioned, and the final stages of the delivery carried out slowly and gently, so that the iris may not be disturbed from its position on the hyaloid membrane.

Does the peripheral iridectomy of Hess play any part in the prevention of iris prolapse? That it does so is undoubted, but that its rôle is of primary importance I doubt. If more attention were paid to the first points mentioned, with regard to the incision and the tumbling of the lens, and a conjunctival or corneal suture used, then the iridectomy would come to be regarded as a mere prophylactic against iris prolapse, and not as an essential part of the operation. In my last twelve cases I made no iridectomy at all, using a conjunctival stitch in five of these. In no case did iris prolapse occur, and in all the pupil remained circular. The three cases of iris prolapse reported were in patients operated upon during the height of the season, when pressure of work made speed essential. In all a peripheral iridectomy was done, save as above mentioned in the last twelve cases.

Occasionally it is noted on the first dressing that the pupil is not quite circular, being placed somewhat above its normal central position, and perhaps oval-shaped transversely. This slight irregularity in the shape of the pupil corrects itself usually before the tenth day. In every case, however, the whole of the pupillary margin of the iris remains visible, there being no question of the iris being drawn into the wound.

Success in phacoerisis may be said to be due to:
1. The simple extraction with or without iridectomy, every movement being carried out with care and without undue haste.
2. The use of the conjunctival or corneal suture.
3. The use of a subcutaneous injection of novocain 1 : 100, with cocain 1 : 150, in the region of the external angular process, to cause temporary paralysis of the orbicularis oculi (20). This procedure is of great value in patients who seem likely to squeeze their lids.
4. The use of the subconjunctival injection of cocain four per cent. with adrenalin 1 : 1000 equal parts at the lower corneal limbus.
5. The use of a subcutaneous injection of morphia gr. 1/4, one hour before operation. This injection is most useful because of the placid frame of mind into which it brings the patient at the time of
operation. It also tends to check any inclination there may be to vomiting, which very occasionally occurs after the injection of cocain and adrenalin.

The absence of reactionary symptoms is due to the simplicity of the surgical technique and to the absence of crystalline remains in the anterior chamber, which shortens convalescence and assures visual acuity. One must admit that there is an element of danger in the Barraquer operation, and that entirely new difficulties have to be mastered. But what new operative procedure worth trying has been free from difficulties or risk? In my opinion, to anyone familiar with the intracapsular operation, there is, after a certain amount of practice, less risk involved in removing a lens by the Barraquer method than by Smith's method. I can see difficulties but no disadvantages in the method, unless extra time spent over the preparation of the patient, more attention and time given to the various details in technique during the operation, an extra piece of apparatus to go wrong, which it never need do with ordinary care, can be brought forward as disadvantages, and these may be legitimately brought forward in a clinic where 1000 cataract extractions are performed in the course of a month. Even there, however, the advantages to the patient outweigh the disadvantages. The most immature cataract can be removed with the erisiphac just as easily as the mature. I have removed two lenses by the Barraquer method with excellent results in patients, who could with some difficulty read newspaper type, but whose distant vision was distorted. One feels diffident, however, in extracting a lens which one can not or only with great difficulty see with a good electric light.

"Many years have been necessary for establishing the rules which have led us to the precision obtained in the operative process by disscion. The same must happen to the process of total extraction by the erisiphac or any other like method. It is necessary for us all to tackle this study without hesitation, lending to the experiments the sincerety which ought to be insisted upon in all scientific investigation."

REFERENCES
EDWARD THE CONFESSOR'S PHYSICIAN:
AN OPHTHALMIC NOTE

BY
R. R. JAMES
LONDON

Leofstan, Abbot of Bury St. Edmund's, died in August, 1065, and was succeeded by Baldwin, a monk of St. Denis at Paris, who was at that time Prior of Deerhurst, Gloucestershire. He was "gretly expert in crafft off medycyne"; and in most of the annals of the monastery he is called "medicus Aedwardi regis." He restored the sight of his hostile neighbour, Herfastus, Bishop of Hulm (later Thetford and afterwards Norwich) when the latter received an injury to his eyes.

Herman, the Archdeacon (Reg. Rub. Coll. Bur., 330, referred to by Yates in his history of Bury Abbey, p. 99), says that "as the Bishop was riding and conversing with his attendants on some injuries meditated by him against the monastery of St. Edmund, a branch of a tree struck his eyes, and a vidilent and painful suffusion of blood occasioned immediate blindness, St. Edmund thus avenging himself and punishing the temerity of the invader of his rights. Having long remained entirely blind, without the prospect of relief, the Archdeacon ventured to say to him: 'My Lord Bishop, your endeavours are useless, no collyrium will avail; you should seek the favour of God and St. Edmund. Hasten to Abbot Baldwin that his prayers to God and St. Edmund may provide an efficacious remedy.' This counsel, at first despised, was at length assented to. Herman undertook the embassy, and executed it on the same day, the festival of St. Simon and St. Jude. The Abbot benignantly granted the request; and the enfeebled Bishop came to the