Hemiretinal vein occlusion 12-month outcomes are unique with vascular endothelial growth factor inhibitors: data from the Fight Retinal Blindness! Registry

Adrian Robert Hunt 1,2, Vuong Nguyen 1, Jennifer J Arnold,3 Ian L McAllister 4, Hemal Mehta,1,5 Alessandro Invernizzi 6, Theodorus Ponsioen,7 Pierre-Henry Gabrielle 1,8 Louise O’Toole,9 Pavol Kusenda,10 Socorro Alforja,11 Daniel Barthelmes,1,12 Mark C Gillies1

ABSTRACT

Background/aims To describe baseline characteristics and 12-month outcomes with vascular endothelial growth factor (VEGF) inhibitors of treatment-naive hemiretinal vein occlusion (HRVO) compared with branch (BRVO) and central (CRVO) variants in routine clinical care.

Methods A database observational study recruited 79 HRVO eyes, 590 BRVO eyes and 344 CRVO eyes that initiated therapy over 10 years. The primary outcome was mean change in visual acuity (VA—letters read on a logarithm of minimal angle of resolution chart) at 12 months. Secondary outcomes included mean change in central subfield thickness (CST), injections and visits.

Results At baseline, mean VA in HRVO (53.8) was similar to CRVO (51.9; p=0.40) but lower than BRVO (59.4; p=0.009). HRVO eyes improved to match BRVO eyes from soon after treatment started through 12 months. Mean change in VA was greater in HRVO (+16.4) than both BRVO (+11.4; p=0.006) and CRVO (+8.5; p<0.001). Mean change in CST in HRVO (−231 µm) was similar to CRVO (−259 µm; p=0.33) but greater than BRVO eyes (−151 µm; p=0.003). The groups had similar median burdens of eight injections and nine visits.

Conclusions HRVO generally experienced the greatest mean change in VA of the three types of RVO when treated with VEGF inhibitors, ending with similar 12-month VA and CST to BRVO despite starting closer to CRVO. Inclusion of HRVO in BRVO or CRVO cohorts of clinical trials would be expected to proportionally inflate and skew the visual and anatomic outcomes.

INTRODUCTION

Hemiretinal vein occlusion (HRVO) is regarded pathologically as a type of central RVO (CRVO) with a better prognosis.1–3 For many years, it was managed like branch RVO (BRVO) with laser.4 It remains unclear in the era of intravitreal injections whether HRVO should be regarded as a BRVO, CRVO or as a separate entity.

The last time that treatment response of HRVO was differentiated from BRVO and CRVO was in Report 14 of the SCORE study using triamcinolone as the comparator. The study suffered from a lack of power and modest response to treatment but at 12 months the thirty HRVO eyes did achieve the greatest improvement in visual acuity (VA) (+8.8 letters), followed by BRVO (+4.5 letters) and CRVO (−1.4 letters).5

Trials regarding vascular endothelial growth factors (VEGF) inhibitors have variably included HRVO eyes. After the SCORE group included HRVO with BRVO when investigating triamcinolone, they later included HRVO with CRVO in SCORE2 reporting noninferiority of bevacizumab compared with aflibercept.6 The pivotal trials investigating safety and efficacy of VEGF inhibitors in RVO excluded HRVO from CRVO but instead included HRVO in BRVO cohorts receiving ranibizumab (16%–17% HRVO) or aflibercept (undisclosed proportion).7,8 Just last year (2020), Vader et al reported non-inferiority of bevacizumab and ranibizumab in RVO with a subgroup analysis that combined 47 HRVO eyes with 97 CRVO eyes.12 To support that choice the authors cited a review article which argued HRVO was a variant of CRVO, with similar pathogenesis and risk factors.13 Grouping with BRVO or CRVO has resulted in a lack of evidence specific to HRVO and at the same time made the practice difficult to justify. Here, we have compared the outcomes with VEGF inhibitors of a large number of treatment naïve eyes with HRVO, BRVO and CRVO in routine clinical practice in order to establish whether HRVO is similar to BRVO or CRVO or whether it has distinct outcomes.

MATERIALS AND METHODS

Design and setting

This study adhered to the tenets of the Declaration of Helsinki and followed the checklists for Strengthening the Reporting of Observational Studies in Epidemiology.14 Data were obtained from the prospectively designed Fight Retinal Blindness! RVO module of the Save Sight Registries.

All patients gave their informed consent.

Data sources and measurements

This study reflected routine clinical care. Management decisions including choice and timing of
treatment were made at the discretion of the treating physician. The type of RVO (BRVO, HRVO or CRVO) was categorised by the treating physician at enrolment. A baseline visit captured demographic data when the first injection was administered. The number of letters read on a logarithm of the minimum angle of resolution VA chart (best of uncorrected, corrected or pinhole), central subfield thickness (CST in μm), the presence of cystoid macular oedema (CMO, active or inactive as judged by the treating physician), any treatments given, other procedures performed, and adverse events were recorded at baseline and follow-up visits.

Patient selection

We studied treatment-naïve patients with CMO due to HRVO commencing therapy with either aflibercept (2 mg Eylea, Bayer), bevacizumab (1.25 mg Avastin; Genentech, California, USA/Roche, Basel, Switzerland) or ranibizumab (0.5 mg Lucentis, Genentech/Novartis) between 1 January 2010 and 1 January 2020 in Australia, France, Ireland, Italy, the Netherlands, New Zealand, Spain and Slovakia—only centres auditing all three forms of RVO were included. This ensured comparison of HRVO with cohorts consisting entirely of BRVO and CRVO—free of any inadvertently included cases of HRVO. Eligible patients must have had at least three visits to establish sufficient ongoing follow-up.

Outcomes

The primary outcome was mean change in VA at 12 months. Secondary outcomes included mean change in CST, injections and visits, the proportion of eyes with VA >70 letters at 12 months, switching (at least two injections with an alternate VEGF agent or a single steroid agent) and non-completion (final visit <365 days). Outcomes were studied in all eyes with HRVO and compared separately to eyes with CRVO (vs HRVO) and BRVO (vs HRVO). We examined if undertreatment accounted for differences by further subgrouping based on the number of injections given.

Statistical analysis

Observations began at the first injection and continued until the 12 month visit (365±30 days). Baseline demographic characteristics with significant differences between HRVO versus BRVO and HRVO versus CRVO in bold (p<0.05)

Table 1

<table>
<thead>
<tr>
<th></th>
<th>HRVO</th>
<th>BRVO</th>
<th>P value (vs HRVO)</th>
<th>CRVO</th>
<th>P value (vs HRVO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eyes, n</td>
<td>79</td>
<td>590</td>
<td></td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>Patients, n</td>
<td>78</td>
<td>580</td>
<td></td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>Gender, % female</td>
<td>48</td>
<td>51</td>
<td>0.75</td>
<td>41</td>
<td>0.31</td>
</tr>
<tr>
<td>Age, mean years (SD)</td>
<td>71 (11)</td>
<td>70 (11)</td>
<td>0.53</td>
<td>70 (12)</td>
<td>0.68</td>
</tr>
<tr>
<td>VA, mean letters (SD)</td>
<td>53.8 (17.7)</td>
<td>59.4 (14.9)</td>
<td>0.009</td>
<td>51.9 (18.7)</td>
<td>0.40</td>
</tr>
<tr>
<td>VA ≥70 letters, %</td>
<td>24</td>
<td>32</td>
<td>0.15</td>
<td>21</td>
<td>0.54</td>
</tr>
<tr>
<td>VA ≤35 letters, %</td>
<td>20</td>
<td>9</td>
<td>0.007</td>
<td>22</td>
<td>0.88</td>
</tr>
<tr>
<td>CST, mean microns (SD)</td>
<td>550 (186)</td>
<td>482 (159)</td>
<td>0.004</td>
<td>630 (223)</td>
<td>0.002</td>
</tr>
<tr>
<td>Initial treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>33%</td>
<td>32%</td>
<td>0.90</td>
<td>26%</td>
<td>0.27</td>
</tr>
<tr>
<td>Ranibizumab</td>
<td>37%</td>
<td>39%</td>
<td>0.71</td>
<td>41%</td>
<td>0.52</td>
</tr>
<tr>
<td>Aflibercept</td>
<td>30%</td>
<td>29%</td>
<td>0.79</td>
<td>32%</td>
<td>0.79</td>
</tr>
</tbody>
</table>

P values reflect comparison of HRVO versus BRVO or comparison of HRVO versus CRVO.

BRVO, branch retinal vein occlusion; CRVO, central retinal vein occlusion; CST, central subfield thickness; HRVO, hemiretinal vein occlusion; VA, visual acuity.

RESULTS

A total of 79 eyes (78 patients) diagnosed with HRVO fulfilled the selection criteria and were included in the analysis. The control groups included 590 eyes (580 patients) with BRVO and 344 eyes (344 patients) with CRVO.

Demographic characteristics

Baseline demographic characteristics are presented in table 1. The mean (SD) baseline VA in HRVO eyes was 53.8 (17.7) letters which was significantly worse than the BRVO eyes (59.4 letters; p=0.009) and closer to the CRVO eyes (51.9 letters; p=0.40).

The mean (SD) baseline CST in HRVO was 350 (186) μm, significantly greater than that of the BRVO eyes (482 μm; p=0.004) and significantly less than that of the CRVO eyes (630 μm; p=0.002).

There were 20% of eyes with VA ≤35 letters in the HRVO group, similar to 22% in the CRVO controls (p=0.88) but different from 9% in the BRVO controls (p=0.004). The proportion of eyes starting treatment on each VEGF inhibitor was similar.
Macular thickness

The mean CST in HRVO eyes approached that of the BRVO controls very soon after treatment commenced (figure 1B). This was achieved with a significantly greater mean change in CST in HRVO eyes compared with BRVO controls at 6 months (−214 µm vs −141 µm; p=0.003) and at 12 months (−231 µm vs −151 µm; p=0.003). The HRVO and BRVO groups had very similar mean final CST (319 µm vs 330 µm; p=0.31). After controlling for baseline CST, the adjusted CST change in HRVO and BRVO were similar (p=0.42, table 2).

The mean CST at baseline was lower in HRVO eyes compared with CRVO eyes (550 µm vs 630 µm; p=0.002). The separation continued to 12 months (319 µm vs 371 µm; p=0.001). The mean change in CST was highest in the CRVO group (−259 µm) but it was not significantly greater than HRVO eyes (p=0.33). After controlling for baseline CST, the adjusted CST change was significantly greater in HRVO compared with CRVO (p=0.019, table 2).

Twelve (15%) of the HRVO eyes never had a single visit without active CMO during the study compared with 25% of CRVO eyes (p=0.07) and 29% of BRVO eyes (p=0.007).

Treatments and visits

The HRVO completers (89%) had medians (Q1, Q3) of 8 (6, 10) injections and 9 (9, 11) visits over 12 months with means of 4.9 injections given in the first 6 months and 2.5 injections in the final 6 months—one of which were significantly different to the eyes with BRVO or CRVO. Only two eyes with HRVO had focal laser treatment.

Eyes with HRVO consistently outperformed BRVO and CRVO irrespective of total injections given. We checked if the trend was due to undertreatment in our study by splitting completers in two groups based on injections received (figure 2). We used ≥7 injections (mean 9.4) to create one group that resembled treatment in pivotal RCTs and another group to represent possible undertreatment with <7 injections (mean 4.2).16–19 Eyes treated with ≥7 injections (65%) had mean change in VA with HRVO, BRVO and CRVO of +16.6, +13.6 and +10.8 letters, respectively. The remainder (35%) that received <7 injections had mean change in VA for HRVO, BRVO and CRVO of +12.5, +8.9 and +7.3 letters, respectively.

Switching and dropout

Switching VEGF inhibitors occurred in 11 HRVO eyes (14%) which was most commonly to aflibercept (six eyes) and from bevacizumab (five eyes) with very similar switching patterns in the control groups (figure 3). Only one HRVO eye switched to a steroid (dexamethasone implant) in 12 months. Steroid switching occurred in 6% of both the BRVO and CRVO groups when mean change in VA was ≥3 and ≤5 letters, respectively. The higher rate of steroid switching compared with HRVO was not statistically significant.

Eyes that did not complete 12 months with HRVO did so with good outcomes. Nine eyes (11%) with HRVO dropped out at a median (Q1, Q3) of 164 (91, 293) days (figure 3), with mean final VA of 80 (69, 84) letters, mean VA change from baseline of +25 (17, 41) letters and mean final CST of 275 µm (265, 281). Some eyes may have completed successful treatment. Documented reasons for lost to follow-up included one patient going to another doctor and two declining further treatment.
BRVO and CRVO eyes to concur with previous reports.5 Once
while macular thickness at baseline placed HRVO between
line in HRVO eyes was worse than BRVO and closer to CRVO
VEGF inhibitors compared with BRVO and CRVO. VA at base-
This analysis using the FRB! observational database found that
DISCUSSION
Adverse events
Pigmentary macular changes affecting vision occurred during
follow-up in 4 HRVO eyes with a decline in vision from a
mean (SD) VA 58 (28) letters at 6 months to 49 (28) letters at
12 months and included one eye that received retinal laser for
documented proliferative disease. Scatter retinal photocoagula-
tion was delivered to a total of 23 HRVO eyes that had mean
(CI) change in VA at 12 months of +15 (7, 23) letters and that
received 8 (4, 8) injections which was typical of other eyes with
HRVO in the cohort. There were no cases of endophthalmitis,
traumatic cataract or retinal detachment following 585 injec-
tions in 12 months.

The mean change in VA over 12 months, the primary
outcome, was significantly higher in eyes with HRVO (+16.4
letters) than with BRVO (+11.4 letters; p=0.006) and with
CRVO (+8.5 letters; p<0.001). Mean change in CST was
largest in CRVO, closely followed by HRVO which was signifi-
cantly greater than BRVO eyes. Treatment burden was similar
across all forms of RVO at around eight injections in this real-
world study. HRVO eyes outperformed eyes with BRVO and
CRVO irrespective of how many injections were given over 12
months.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

Significant differences between HRVO vs BRVO and HRVO vs CRVO are in bold (p<0.05).

Adjusted, using analysis of covariance controlling for first treatment age and baseline VA or CST as fixed effects and nesting within patients (both eyes) or the same practice as random effects.

*Calculated only in completers receiving VEGF monotherapy throughout with Generalised Poisson models used to generate p values.

†Periods >180 days containing recorded visits and no treatment.

ADVERSE EVENTS
Pigmentary macular changes affecting vision occurred during
follow-up in 4 HRVO eyes with a decline in vision from a
mean (SD) VA 58 (28) letters at 6 months to 49 (28) letters at
12 months and included one eye that received retinal laser for
documented proliferative disease. Scatter retinal photocoagula-
tion was delivered to a total of 23 HRVO eyes that had mean
(CI) change in VA at 12 months of +15 (7, 23) letters and that
received 8 (4, 8) injections which was typical of other eyes with
HRVO in the cohort. There were no cases of endophthalmitis,
traumatic cataract or retinal detachment following 585 injec-
tions in 12 months.

DISCUSSION
This analysis using the FRB! observational database found that
HRVO was a distinct clinical entity at baseline and in response to
VEGF inhibitors compared with BRVO and CRVO. VA at base-
line in HRVO eyes was worse than BRVO and closer to CRVO
while macular thickness at baseline placed HRVO between
BRVO and CRVO eyes to concur with previous reports.6 Once
treatment was underway, the mean VA and CST in HRVO almost
mirrored BRVO through 12 months.

The mean change in VA over 12 months, the primary
outcome, was significantly higher in eyes with HRVO (+16.4
letters) than with BRVO (+11.4 letters; p=0.006) and with
CRVO (+8.5 letters; p<0.001). Mean change in CST was
largest in CRVO, closely followed by HRVO which was signifi-
cantly greater than BRVO eyes. Treatment burden was similar
across all forms of RVO at around eight injections in this real-
world study. HRVO eyes outperformed eyes with BRVO and
CRVO irrespective of how many injections were given over 12
months.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

The unadjusted outcomes of our study are more relevant to
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.

The results of our study can be interpreted differently from a
clinical or research point of view. The adjusted outcomes offer
clinical prognostic utility to individual patients, that is, a patient
with a certain VA would likely do equally well if they had a
BRVO or HRVO but would fair less well if they had a
CRVO.
each type of RVO. This highlights the risk of bias when HRVO is merged with BRVO or CRVO in trials.

Our results suggest that inclusion of HRVO in BRVO trails could inflate VA and CST outcomes. The BRAVO and VIBRANT studies make no mention of including HRVO in their abstracts, however, HRVO contributed 16%–17% of eyes to the ranibizumab treatment arms of the BRAVO study (+18.3 letters, −345 µm).7 The VIBRANT study also included eyes with HRVO without reporting the proportion (+17 letters, −280 µm).8 Caution should be exercised in comparing different studies especially if the contribution made by HRVO is not declared. The BRVO outcomes in the present study and in our previous study of real-world outcomes of ranibizumab vs aflibercept in BRVO (+11 letters, −150 to −170 µm) were less impressive than those pivotal RCTs.20 Such findings are not unusual for a real-world study, but it is possible that the inclusion of HRVO in the RCTs could have widened the margin. For the sake of comparison, the MARVEL study (+16 to +18 letters, −170 to −200 µm), a smaller RCT comparing bevacizumab and ranibizumab in eyes with BRVO excluded eyes with HRVO.21

In a CRVO cohort, the mean change in VA may increase by including HRVO while mean change in CST may decrease. A recent non-inferiority study included 31% of eyes with HRVO in a CRVO cohort comparing bevacizumab to ranibizumab.12 The 6-month visual gains were surprisingly high (+16 to +17 letters) while CST changes were modest (−330 to −400 µm) with monthly treatment. The pivotal CRUISE study which excluded HRVO had smaller VA changes (+13 to +15 letters) and larger changes in CST (−450 to −460 µm).22

Figure 2 Boxplot of change on VA at 12 months with (A) <7 injections (35% of completers) or with (B) 7–13 injections (65% of completers). The boxes (first to third quartiles) contain median (bold line) with whisker extension at 50% of the IQR. BRVO, branch RVO; CRVO, central RVO; HRVO, hemiretinal vein occlusion; VA, visual acuity.

Figure 3 Kaplan-Meier survival curves describing time to (A) switching from original VEGF inhibitor and (B) non-completion by RVO type. BRVO, branch RVO; CRVO, central RVO; HRVO, hemiretinal vein occlusion; VEGF, vascular endothelial growth factor.
Randomisation aims to minimise selection bias so that any difference in outcome between groups can be explained only by the treatment. There is potential for confounding when stratification based on HRVO is not done and disproportionate contributions are made by HRVO to study groups receiving different treatments. For example, randomisation distributed 24 HRVO eyes to the afiblercept group (13%) and 31 eyes to the bevacizumab group (17%) in the Study of Compari

tative Treatments for RETinal Vein Occlusion 2 (SCORE2) study. 6 Another comparative study had 15% HRVO in a ranibizumab
group and 19% in a bevacizumab group when it compared outcomes in CRVO. 12

There are some limitations inherent with the observational design of this study. The FRB! registry does not use reading centres and relies on the diagnosis and consistency of the treating physicians that are obliged to include least 85% of their relevant patients and finalise data entry in over 95% of visits to fulfil audit requirements. We are not aware of what drove treatment decisions, nor can we describe a protocol to reproduce these results. Switching VEGF agents (15%) probably reflected access to VEGF inhibitors over the duration of the study in keeping with normal clinical care. Steroid switching was more common in eyes with BRVO and CRVO compared with HRVO. We censored observations after steroid switching which may have selectively biased results by carrying forward the last observation when doing poorly on VEGF therapy. We wanted to study outcomes while on VEGF therapy only. The way in which we examined undertreatment as a possible cause for our findings was exploratory with subgrouping based on an outcome. It is possible that many eyes that received seven or more injections were undertreated and that many eyes were adequately treated with <7 injections.

The reason for the differences in outcomes in each type of RVO have not been explained by this study but may relate to a greater ability for eyes with HRVO to develop collateral vascular
tissue as a means of improving venous outflow. 24 The lack of statistically significant difference in the adjusted outcomes for HRVO compared with BRVO over looks the fact that HRVO caught up to match the mean final VA and CST of BRVO at 12
months despite starting with significantly worse vision. HRVO shares with BRVO the opportunity for the congested venous circulation to decompress via the retinal capillaries that cross the median raphe to the unaffected retinal venous system and the potential for development of an optociliary shunt that may be the only bypass for an occluded central retinal vein. The pathology of HRVO involves occlusion at one of two separate venous trunks passing through the lamina cribrosa prior to uniting into a common central vein. 3 This may allow development of a third collateral process in HRVO anterior to the lamina cribrosa to the unobstructed second venous trunk which is haemodynamically significant. 25

Treatment-naïve HRVO eyes receiving VEGF inhibitors in routine clinical practice had very good visual and anatomic outcomes. Eyes with HRVO started with VA and CST closer to eyes with CRVO but ended with 12-month VA and CST equi

alent to eyes with BRVO and in doing so significantly outperformed both BRVO and CRVO in mean change in VA over 12
months. We provide evidence specific to HRVO which suggests that it should not be considered equivalent to BRVO or CRVO at presentation or when comparing responses to treatment. There is a potential risk of bias when reporting the efficacy of treatments for BRVO and CRVO if a significant proportion of eyes have HRVO.

Author affiliations
1Clinical Ophthalmology and Eye Health, The University of Sydney Save Sight Institute, Sydney, New South Wales, Australia
2Department of Ophthalmology, Westmead Hospital, Sydney, New South Wales, Australia
3Marsden Eye Specialists Laser LASIK Eye Cataract Glaucoma Eyelid & Oculoplastic, Parramatta, New South Wales, Australia
4University of Western Australia, Lions Eye Institute, Nedlands, Western Australia, Australia
5Ophthalmology Department, Mater Private Hospital, Dublin, Ireland
6Department of Ophthalmology, Isala, Zwolle, The Netherlands
7Department of Ophthalmology, Centre Hospitalier Universitaire de Dijon, Dijon, France
8Department of Ophthalmology, Mater Private Hospital, Dijon, France
9Department of Ophthalmology, University Hospital – Nemocnica sv. Michala, Bratislava, Slovakia
10Department of Ophthalmology, Institute Clinic of Ophthalmology, Hospital Clinic, Barcelona, Spain
11Department of Ophthalmology, University of Zurich, Zurich, Switzerland

Acknowledgements

Conflict of interest: None declared.

Funding: This work was supported by a grant from the National Health and Medical Research Council, Australia (NHMRC 10-1012).

Competing interests: None declared.

Ethics approval: The study was approved by all relevant institutional ethics committees.

Patient consent for publication: Not applicable.

Ethics approval: The study was approved by all relevant institutional ethics committees.

Funding: This work was supported by a grant from the Royal Australian NZ College of Ophthalmologists Eye Foundation (2007-2009) and a grant from the National Health and Medical Research Council, Australia (NHMRC 2010-120482 on 25 January 2022. Downloaded from http://bjo.bmj.com/ on September 17, 2023 by guest. Protected by copyright.