Is selective laser trabeculoplasty shifting the glaucoma treatment paradigm in developing countries?

Evgenia Konstantakopoulou 1, Gus Gazzard 2,3

In 2019, the Laser in Glaucoma and Ocular Hypertension (LiGHT) randomised controlled trial reported that initial treatment with selective laser trabeculoplasty (SLT) is more cost effective than initial treatment with pressure-lowering eye drops, leading to a reduced number of glaucoma surgeries and very low rates of adverse events while providing drop-free intraocular pressure (IOP) control to 78% of treated eyes after 3 years.1 2 As a result, the European Glaucoma Society,3 the American Academy of Ophthalmology4 and the UK National Institute for Health and Care Excellence5 now recommend the use of SLT as initial treatment for open-angle glaucoma (OAG) and ocular hypertension (OHT).

Although the LiGHT trial provided evidence for change in the treatment of for mild and moderate OAG and OHT, the evidence for the management of advanced glaucoma is not as clear. There is still a lack of robust evidence for the treatment of advanced glaucoma and/ or populations at a greater risk of sight loss, currently not addressed by national and international guidelines.4-6 A similar lack of evidence has been identified by the Lancet Global Health Commission on global eye health, which reported an established uncertainty around managing glaucoma in African populations and has called for more research into cost-effective glaucoma interventions and management strategies applicable to the complexities of glaucoma management in African populations.7 Similarly, the Caribbean also faces significant barriers to healthcare access,8 14 15 with a risk of blindness higher that other ethnicities.16–18 The results support the findings of a similar patient cohort from East Africa, where 0.5% timolol is the treatment of choice due to its affordability: Philippin and colleagues reported SLT’s superiority, being nearly 3.4 times more likely to achieve IOP control compared with timolol.19 The findings by Realini and colleagues, however, do not come from a randomised controlled trial and the shortcomings of these prospective interventional case series need to be taken into account. This is a predominantly observational study, with no quantitative goals and the reported IOP reduction could have been affected by regression to the mean or by a differential attrition rate for eyes with uncontrolled IOP and needing surgery. However, there is currently a lack of robust management protocols for advanced glaucoma, particularly in patients at high risk and Realini et al are to be applauded for reporting useful data in this area. The exclusions of such patients from randomised controlled trials not only limits our understanding of optimum management of advanced and high-risk glaucomatous eyes, but also excludes patients from potentially helpful treatment. Studies like these can, despite the lack of a traditional trial design, inform practice. While it is expected that any single treatment, such as SLT, will not suffice for most patients at high risk, understanding its efficacy in these groups and environments can help us to offer patients and health services a useful additional treatment. Patients in regions such as sub-Saharan Africa and the Caribbean face significant barriers to healthcare access, including the availability and affordability of IOP-lowering eye drops, poor adherence to treatment and non-attendance.9 20

The need for an efficient glaucoma detection and management pathway in regions such as Africa and the Caribbean has sparked interest and activity in research looking into the optimisation of laser use in these regions.21 The African Glaucoma Laser Trial (NCT03648229) is investigating the best treatment strategy for newly diagnosed patients with OAG in Africa, offering SLT, free medical treatment and medical treatment at cost. Outside Africa and the Caribbean, the Clarifying the Optimal Application of SLT Therapy trial is investigating low energy annually repeated SLT in eyes with mild/moderate OAG or high-risk OHT,22 while the GLAURitous trial23 and others24 are investigating the efficacy of direct, non-contact SLT. Results from these studies will hopefully further improve the efficacy of SLT worldwide, but also expand the range of professionals able to deliver efficient IOP-lowering treatments in areas where access to healthcare is limited.

SLT is now adopted in the EU and USA as a first-line treatment for the management of OAG and OHT and is showing significant potential in addressing longstanding difficulties in the management of OAG in regions and populations with high prevalence and incidence of glaucoma. If evidence suggesting that SLT delays glaucoma progression compared with IOP-lowering eye drops are reproduced in these regions and populations, the glaucoma treatment paradigm could be shifted away from topical medical treatment, improving clinical outcomes

1Glaucoma Department, Moorfields Eye Hospital NHS Foundation Trust, London, UK
2NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, UK
3Institute of Ophthalmology, University College London, London, UK

Correspondence to Professor Gus Gazzard, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; g.gazzard@nhs.net

Editorial


BMJ
and preserving vision in a wider number of patients.

Twitter Gus Gazzard @gusgazzard

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Commissioned; internally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Konstantakopoulou E, Gazzard G. Br J Ophthalmol Epub ahead of print: [please include Day Month Year]. doi:10.1136/bjophthalmol-2022-321706

http://dx.doi.org/10.1136/bjophthalmol-2020-317117

Br J Ophthalmol 2022;0:1–2. doi:10.1136/bjophthalmol-2022-321706

ORCID iDs
Evgenia Konstantakopoulou http://orcid.org/0000-0001-8215-2689
Gus Gazzard http://orcid.org/0000-0003-1982-5005

REFERENCES