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ABSTRACT
Background  Diabetic retinopathy (DR) is a leading 
cause of blindness in adults worldwide. Artificial 
intelligence (AI) with autonomous deep learning 
algorithms has been increasingly used in retinal image 
analysis, particularly for the screening of referrable 
DR. An established treatment for proliferative DR is 
panretinal or focal laser photocoagulation. Training 
autonomous models to discern laser patterns can be 
important in disease management and follow-up.
Methods  A deep learning model was trained for laser 
treatment detection using the EyePACs dataset. Data 
was randomly assigned, by participant, into development 
(n=18 945) and validation (n=2105) sets. Analysis 
was conducted at the single image, eye, and patient 
levels. The model was then used to filter input for three 
independent AI models for retinal indications; changes 
in model efficacy were measured using area under the 
receiver operating characteristic curve (AUC) and mean 
absolute error (MAE).
Results  On the task of laser photocoagulation 
detection: AUCs of 0.981, 0.95, and 0.979 were 
achieved at the patient, image, and eye levels, 
respectively. When analysing independent models, 
efficacy was shown to improve across the board 
after filtering. Diabetic macular oedema detection on 
images with artefacts was AUC 0.932 vs AUC 0.955 
on those without. Participant sex detection on images 
with artefacts was AUC 0.872 vs AUC 0.922 on those 
without. Participant age detection on images with 
artefacts was MAE 5.33 vs MAE 3.81 on those without.
Conclusion  The proposed model for laser treatment 
detection achieved high performance on all analysis 
metrics and has been demonstrated to positively affect 
the efficacy of different AI models, suggesting that laser 
detection can generally improve AI-powered applications 
for fundus images.

INTRODUCTION
Laser photocoagulation is a common and estab-
lished procedure, in which laser pulses are used to 
coagulate retinal tissue, used to treat multiple retinal 
diseases.1–3 Ablative photocoagulation is mostly 
used to prevent leakage and ischaemic neovasculari-
sation in vascular retinal conditions such as diabetic 
retinopathy (DR),4 5 diabetic macular oedema 
(DME),6–8 retinal vein occlusion,9 10 and neovas-
cular age-related macular degeneration (AMD).11

Laser photocoagulation is generally divided into 
panretinal and focal; the former is delivered in 
the peripheral retina with deep ablative burns to 
stem the neovascular process,12 13 while the latter 

is a lighter photocoagulative treatment delivered in 
the central macula to treat macular conditions.14 15 
There are well-established laser treatment protocols 
depending on disease severity and individual patient 
disease state.11 16–18 While laser photocoagulation is 
an effective treatment, it causes retinal scarring and 
is destructive to the retinal tissue leaving long-term 
defects in the anatomy.19–21

Artificial intelligence (AI) using fundus imaging 
has been increasingly employed in various ophthal-
mological applications.22 23 These applications 
include extraction of basic patient data, such as age 
and sex,24 detection of retinal pathologies,25 26 and 
pathology development prediction.27 28 AI methods 
rely on image pattern recognition, especially in 
areas in which the pathology is present. As such, 
laser photocoagulation may disrupt general pattern 
recognition by adding new patterns or artefacts, 
such as burns and scars, which the model is less 
trained to deal with. This is specifically problematic 
given that laser treatment is often done on areas of 
interest, such as leaky blood vessels, which are often 
the very areas that are most crucial to recognise.

The effect laser photocoagulation has on AI 
systems suggests that a tool to identify images of 
eyes which have undergone photocoagulation may 
be beneficial for the autonomous retinal-based 
diagnosis and follow-up treatment of patients. 
While previous methods of laser photocoagulation 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Laser photocoagulation is an established 
treatment for retinal conditions such as Diabetic 
Retinopathy. The performance of artificial 
intelligence models for the detection of various 
retinal indications may be affected by the 
existence of laser artifacts.

WHAT THIS STUDY ADDS
	⇒ This study proposes a new state-of-the-art 
artificial intelligence model for the detection 
of laser photocoagulation artifacts, as well 
as demonstrating a positive effect on the 
performance of other artificial intelligence 
models.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study may improve or aid the development 
of future artificial intelligence models for the 
detection and diagnosis of various retinal 
conditions.
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detection exist,29–33 this work, to the best of our knowledge, 
presents the first laser treated image detection method based 
on a large, diverse, and widely accepted database—in this case, 
EyePACS (https://www.eyepacs.org); the database contains 
images from a variety of manufacturers and patient populations, 
of varying image qualities.

METHODS
Data
The data consisted of a subsample of the EyePACs dataset, 
which contains 45° angle fundus photography images and expert 
readings of said images. All images and data were deidentified 
according to the Health Insurance Portability and Accountability 
Act ‘Safe Harbor’ before they were transferred to the researchers.

The dataset contained up to six images per patient visit: one 
macula centred image, one disc centred image, and one centred 
image (in which a central fixation image is fixated on the middle 
of a line connecting the foveola and the optic disc), per eye. 
Each eye underwent expert reading, including but not limited to 
panretinal laser treatment presence, focal laser treatment pres-
ence, and image quality. All images of the subsample deemed 
readable by expert annotations were used.

The resulting dataset consisted of 21 050 images from 9212 
patients, of which 9484 images (45%) had artefacts of panretinal 
laser treatment, 1888 (9%) had artefacts of focal laser treatment 
and 847 (4%) had both. This work combined focal and panret-
inal laser treatments into 1 category of laser treatment, resulting 
in an overall 10 525 (50%) images with laser treatment artefacts 
(table 1). Of these, roughly 77% of patients required dilation, 

where 54% of all patients received 1 gtt. tropicamide 1%, 17% 
received 1 gtt. tropicamide 0.5% and 5% received other dilation 
agents.

The average age of patients with laser treatment artefacts 
was 59.5 (10.0 SD) and 55% were women, compared with the 
patients who had not undergone laser treatment, for which the 
average age was 55.6 (11.3 SD) and 61% of which were women 
(table 2). The prevalence of laser photocoagulation across ethnic 
groups may be found in online supplemental table A. The distri-
bution of laser treatment images across DR levels is given in 
online supplemental table B; all laser treatment images were 
from patients with more than mild DR, and the majority were 
from patients with grade 4 DR.

Quality assessment
An image quality assessment tool was developed using classic 
computer vision methods; the tool detects visibility of fundus-
specific characteristics and assigns each image a score. The given 
quality score for an image is an aggregation of the visibility from 
multiple areas within the fundus image. The tool was validated 
based on visual assessment of images score and the readability of 
the images. Figure 1 demonstrates a few examples of images and 
their respective scores, showing the correlation between score 
and visual image quality. This was done in order to remove low-
quality images from the dataset, as the quality scores assigned by 
EyePACs are assigned to patients and not to individual images.

Preprocessing
Image preprocessing was performed in two steps for both data-
sets. First, image backgrounds were cut along the convex hull, 
which contains the circular border between the image and 
the background. Figure  2 shows an example of this process. 
Second, images were resized to 512×512 pixels. Lastly, using 
the afore-mentioned quality assessment tool, bad-quality images 
were filtered out before training. The model was checked with 
multiple training configurations set by multiple thresholds and 
the image quality threshold was set at the point at which model 
performances were not improved by filtering additional images, 
resulting in 1373 images filtered, approximately 6.5% of the 
data.

Model training
The data was then divided into training, validation, and test 
datasets at a ratio of 80%, 10% and 10%, respectively. A binary 

Table 1  Laser treatment prevalence in the EyePACs dataset

No laser treatment Focal laser Panretinal laser Both

Count 10 525 1888 9484 847

Table 2  Patient demographics for patients who did and did not 
have laser treatment artefacts

Count
Age 
(SD)

Gender (% 
female) Ethnicity (fraction)

With laser 10 525 59.5 
(10.0)

51 White=0.59 (Hispanic=0.95
non-Hispanic=0.05)
Indian subcontinent origin=0.11
African Descent=0.07
Asian=0.02
Not specified=0.13
Other=0.08

No laser 10 525 54.7 
(10.8)

52 White=0.51 (Hispanic=0.90
non-Hispanic=0.10)
African Descent=0.13
Indian subcontinent origin=0.12
Asian=0.03
Not specified=0.14
Other=0.07

Figure 1  Example images and their accompanied image quality 
scores, ordered from the worst quality (left) to the best quality (right).

Figure 2  Example of image cropping, blue lines represent the 
cropping boundaries.
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classification neural network was trained. The model architec-
ture was automatically fitted to best balance the model perfor-
mance versus model complexity tradeoff. Hyperparameter 
tuning was done on the validation set.

Statistical analysis
The metrics used for model assessment were accuracy, sensitivity, 
specificity, and area under the receiver operating characteristic 
curve (AUC). For each metric, the bias corrected and accelerated 
bootstrap method34 was used to produce a 95% CI.

Analysis levels
Laser detection was done on three different levels. The first, 
detection on the individual image level, was the basic task for 
which the model was trained. The second, detection on the eye 
level, used all images from a given eye and the image for which 
the model had the highest probability score was selected for 
analysis. For the third, detection on the patient level, the results 
from both eyes were compared and the eye with the higher prob-
ability score was selected to produce a patient-level result. The 
eye and patient level analysis, respectively, operate on the logic 
that one field or eye with photocoagulation artefacts is sufficient 
for the eye or patient to be classified as positive.

Effect on imaging tasks
The effect that laser treatment has on imaging tasks was measured 
by applying the laser detection model as a postprocessing step 
for a model for the detection of DME, which was developed 
based on the EyePACs dataset,35 and a model for age detection, 
also developed based on the EyePACs dataset.

The performance on these tasks was measured in AUC on a 
separate validation set containing images both with and without 
laser treatment artefacts. The 95% CI was calculated using the 
accelerated bootstrap method for each population and compared 
for significance.

A regression model was additionally trained for age detection, 
and the mean absolute error (MAE) between the patient’s age 
and predicted age was calculated on a separate validation set. 
The validation set was separated into patients with and without 
laser treatment artefacts, such that the mean age between these 
populations was the same. Significance in MAE between the 
two populations was calculated using a student’s t-test. Detailed 

patient statistics of these experiments, as well as details on model 
development, are given in online supplemental tables C and 
following explanations.

RESULTS
The results for the different analysis methods of laser artefact 
detection were as follows (table 3): on the image level, sensitivity 
of 0.883 (95% CI 0.868 to 0.897), specificity of 0.880 (95% CI 
0.864 to 0.894), and AUC of 0.950 (95% CI 0.943 to 0.956) 
were achieved. On the eye level, sensitivity of 0.925 (95% CI 
0.900 to 0.945), specificity of 0.931 (95% CI 0.916 to 0.944), 
and AUC of 0.979 (95% CI 0.972 to 0.984) were achieved. On 
the patient level, sensitivity of 0.929 (95% CI 0.881 to 0.947), 
specificity of 0.926 (95% CI 0.911 to 0.944), and AUC of 0.981 
(95% CI 0.971 to 0.987) were achieved.

The results of laser artefact detection for each DR level are 
displayed in table 4: the model achieved 0.910 AUC (95% CI 
0.866 to 0.941) for DR level 2, 0.887 AUC (95% CI 0.758 to 
0.954) for DR level 3, 0.929 AUC (95% CI 0.918 to 0.938) for 
DR level 4, and 0.772 AUC (95% CI 0.904 to 0.968) for ungrad-
able DR level. DR levels 0 and 1 did not have any laser treated 
examples, thus most metrics are not defined for these groups. 
The results of laser artefact detection stratified by ethnicity are 
available in online supplemental table D.

Online supplemental table E shows the difference in results in 
laser artefact detection between patients with and without DME. 
The model achieved 0.955 AUC (0.948–0.962) for non DME 
patients versus 0.908 AUC (0.884–0.927) for DME patients, 
demonstrating that these conditions do affect results, but the 
model achieves high performance irrespective of them.

Online supplemental table F displays the results of laser arte-
fact detection for images which passed (high quality) and did 
not pass (low quality) the quality filter, showing a significant 
difference between the populations. The results for low-quality 
images, which were filtered out, were 0.787 sensitivity (95% 
CI 0.710 to 0.849), 0.793 specificity (95% CI 0.709 to 0.860), 
and 0.857 AUC (95% CI 0.803 to 0.898); compared with 0.854 
sensitivity (95% CI 0.838 to 0.869), 0.904 specificity (95% CI 
0.890 to 0.917), and 0.948 AUC (95% CI 0.941 to 0.955) for 
high-quality images which passed the filter.

The effect of laser detection and subsequent filtration on the 
afore-mentioned three tasks of DME detection, age prediction, 

Table 3  Laser treatment detection results on the EyePACs dataset for the three analysis levels performed, given in accuracy, sensitivity, specificity 
and AUC with a 95% CI

Accuracy (CI) Sensitivity (CI) Specificity (CI) AUC (CI)

Image level 0.882 (0.870 to 0.892) 0.883 (0.868 to 0.897) 0.880 (0.864 to 0.894) 0.950 (0.943 to 0.956)

Eye level 0.929 (0.916 to 0.940) 0.925 (0.900 to 0.945) 0.931 (0.916 to 0.944) 0.979 (0.972 to 0.984)

Patient level 0.927 (0.910 to 0.940) 0.929 (0.881 to 0.947) 0.926 (0.911 to 0.944) 0.981 (0.971 to 0.987)

CI noted in parentheses.
AUC, area under the receiver operating characteristic curve.

Table 4  Results on the EyePACs dataset across DR grades, given in accuracy, sensitivity, specificity, and AUC with a 95% CI

DR grade 2 3 4 Ungradable

Sensitivity (CI) 0.680 (0.591 to 0.756) 0.667 (0.472 to 0.806) 0.869 (0.853 to 0.884) 0.846 (0.652 to 0.957)

Specificity (CI) 0.958 (0.906 to 0.984) 0.960 (0.791 to 1) 0.845 (0.821 to 0.866) 0.688 (0.400 to 0.882)

AUC (CI) 0.910 (0.866 to 0.941) 0.887 (0.758 to 0.954) 0.929 (0.918 to 0.938) 0.772 (0.904 to 0.968)

CI noted in parentheses.
DR, diabetic retinopathy.
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and sex detection were as follows: DME detection results for 
images with no laser artefacts were 0.955 AUC (95% CI to 0.948 
to 0.961), compared with images with laser artefacts, on which 
the model achieved 0.932 AUC (95% CI 0.905 to 0.951). Age 
prediction results for images with no laser artefacts, after age 
adjustment, were 3.81 MAE, compared with images with laser 
artefacts, on which the model achieved 5.33 MAE. T-test anal-
ysis shows a significance of p<1e−4. Sex detection results for 
images with no laser artefacts were 0.922 AUC (95% CI 0.916 
to 927), compared with images with laser artefacts for which the 
model achieved 0.872 AUC (95% CI 0.830 to 0.903).

The aggregation of these results is shown in table 5.

DISCUSSION
This work proposed a method for the automatic detection of 
laser treatment artefacts in fundus images, which may also serve 
as a component in the future development of AI systems for 
different diagnoses based on retinal imaging. Such tasks may 
need to consider images of laser-treated eyes differently from 
non-treated eyes according to their design needs; some may 
choose to discard these images, while others may analyse them 
in a manner differently to images of untreated eyes. Accordingly, 
and in accordance with the degree to which laser treatment 
affects the task in question, the proposed system may be used 
at different operating points with different sensitivity–specificity 
balances. Discarding laser-treated images is a viable option for 
most automated retinal screening applications, as these patients 
should already have an awareness of the need for regular 
screening.

Previous studies on the autonomous detection of laser burns 
from fundus images have been on a smaller scale (roughly 2 
orders of magnitude).29–33 The importance of scale is in the better 
representation of real-life conditions; specifically, this study 
allows better representation of various image qualities, camera 
manufacturers, and populations. Additionally, a wider range of 
clinical conditions, such as DR and DME, are represented in this 
study both with and without laser treatment, and the proposed 
system shows high performance across these conditions.

The effect laser treatment has on imaging tasks, and the model’s 
ability to detect relevant images was validated by checking the 
model’s effect on different AI tasks involving retinal images. A 
significant difference was found for all three tasks, showing the 
relevance of the proposed method for future AI tasks.

A limitation of this work is the lack of differentiation between 
focal and panretinal laser treatments that were grouped as one 
in this work. Future works may differentiate between the two, 

given increased data. Furthermore, even though the base charac-
teristics of laser photocoagulation remain similar across condi-
tions, the addition of AMD-specific databases to the training set 
may improve results.

In addition, and in the same vein of the presented work, 
machine learning methods to detect patients with DME who 
will require future laser treatment may be developed. This 
would require training a model, similar to the one presented, 
on a dataset generated from a longitudinal study tracking the 
progression of patients with diabetes.
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Supplementary  

Table A: Ethnic distribution of training dataset 

 

 Population With Photocoagulation No Photocoagulation 

Latin American 0.52 0.56 0.47 

Not Specified 0.14 0.13 0.14 

Indian subcontinent origin 0.12 0.11 0.12 

African Descent 0.10 0.07 0.13 

Caucasian 0.04 0.03 0.05 

Asian 0.03 0.03 0.03 

Others 0.05 0.07 0.06 
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Table B: Distribution of laser treatment prevalence across different diabetic 

retinopathy grades 

 

DR grade 0 1 2 3 4 ungradable 

Total count 558,451 52,928 106,377 16,909 19,470 25,718 

With laser 0 0 365 175 9,607 136 

No laser 558,451 52,928 105,742 16,734 9,863 25,582 
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Table C: Cohort statistics for the three modules tested for laser treatment filtering 

effect. 

Task Patients Images Mean Age (S.D) Gender Ethnicity (fraction) 

DME 
detection 

1,607 

  

3,576 54.80 (10.35) 50% 
female 

white = 0.55 (Hispanic = 0.93, 
non-Hispanic = 0.07) 

ethnicity not specified = 0.13 

Indian subcontinent origin = 0.12 

African Descent = 0.11 

Asian = 0.02 

Other = 0.07 

Age 2612 4754 61.78 (10.88) 57% 
female 

white = 0.50 (Hispanic = 0.88, 
non-Hispanic = 0.12) 

ethnicity not specified = 0.17 

African Descent = 0.13 

Indian subcontinent origin = 0.08 

Asian = 0.03 

Other = 0.09 

Sex 1318 10506 54.94 (11.06) 59% 
female 

white = 0.60 (Hispanic = 0.83, non-Hispanic = 
0.17) 

ethnicity not specified = 0.14 

African Descent = 0.09 

Indian subcontinent origin = 0.06 

Asian = 0.03 

Other = 0.08 
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Table C1: Calibration data cohort statistics for the three modules tested for laser treatment 

filtering effect. 

Task Patients Images Mean Age 
(S.D) 

Gender Ethnicity (fraction) 

DME detection 1,607 

  

3,576 54.80 
(10.35) 

50% 
female 

white = 0.55 (Hispanic = 0.93, 
non-Hispanic = 0.07) 

ethnicity not specified = 0.13 

Indian subcontinent origin = 0.12 

African Descent = 0.11 

Asian = 0.02 

Other = 0.07 

Age 9,485 76,173 55.18 
(11.67) 

59% 
female 

white = 0.61 (Hispanic = 0.87, 
non-Hispanic = 0.13) 

ethnicity not specified = 0.18 

African Descent = 0.10 

Indian subcontinent origin = 0.04 

Asian = 0.04 

Other = 0.07 

Sex 1,930 15,786 54.47 
(11.37) 

60% 
female 

white = 0.66 (Hispanic = 0.85, 
non-Hispanic = 0.15) 

ethnicity not specified = 0.14 

African Descent = 0.08 

Indian subcontinent origin = 0.05 

Asian = 0.05 

Other = 0.02 
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Table C2: Test data cohort statistics for the three modules tested for laser treatment filtering 

effect. 

Task Patients Images Mean Age 
(S.D) 

Gender Ethnicity (fraction) 

DME detection 14,078 

  

28,274 55.00 
(10.18) 

51% 
female 

white = 0.55 (Hispanic = 0.93, 
non-Hispanic = 0.07) 

ethnicity not specified = 0.13 

Indian subcontinent origin = 0.11 

African Descent = 0.11 

Asian = 0.03 

Other = 0.07 

Age 85,374 686,255 55.17 
(11.62) 

58% 
female 

white = 0.61 (Hispanic = 0.87, 
non-Hispanic = 0.13) 

ethnicity not specified = 0.18 

African Descent = 0.10 

Indian subcontinent origin = 0.05 

Asian = 0.04 

Other = 0.06 

Sex 91,961 742,915 55.23 
(11.64) 

59% 
female 

white = 0.63 (Hispanic = 0.87, 
non-Hispanic = 0.13) 

ethnicity not specified = 0.15 

African Descent = 0.1 

Indian subcontinent origin = 0.05 

Asian = 0.04 

Other = 0.03 

 

All models were trained using data compiled and provided by EyePacs which consisted of 

45° angle fundus photography images and expert readings of said images. Images were 

resized to 512X512 pixels for all models.  

DME model 

The data was composed of 32,049 images from 15,892 patients. Two images were taken for 

each eye from two different fields, one centered on the macula and another centered 

between the macula and the disc. The average age was 55.02 (10.21 SD), 51% of the 

patients were female. 

The data was divided into training, validation, and test datasets consisting of 80%, 10%, and 

10% of the data respectively. 
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Sex model 

The training & validation data was comprised of 742,915 images from 91,961 patients. Test 

data was comprised of 15,786 images from 1,930 patients.  

Age model 

The training & validation data was comprised of 686,225 images from 85,374 patients. Test 

data was comprised of 76,173 images from 9,485 patients.  
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Table D: laser artifact detection stratified by ethnicity. 

 

 
Accuracy Sensitivity Specificity AUC Support 

Latin American 0.914 0.901 0.931 0.973 10847 

Ethnicity not specified 0.909 0.877 0.94 0.963 2855 

African Descent 0.864 0.778 0.912 0.936 2196 

Indian subcontinent origin 0.832 0.776 0.882 0.905 2473 

Caucasian 0.913 0.864 0.943 0.97 905 

Asian 0.926 0.928 0.925 0.979 664 

Multi-racial 0.888 0.889 0.887 0.962 160 

Other 0.928 0.938 0.915 0.983 207 
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Table E: Results on the EyePACs dataset for patients with and without DME, given in 

accuracy, sensitivity, specificity, and AUC with a 95% confidence interval. CI noted in 

parentheses. 

 

DME  No Yes 

Sensitivity (C.I) 0.873 (0.856, 0.889) 0.770 (0.727, 0.811) 

Specificity (C.I) 0.906 (0.890, 0.919) 0.897 (0.962, 0.925) 

AUC (C.I) 0.955 (0.948, 0.962) 0.908 (0.884, 0.927) 
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Table F: Results for images which were filtered out and not filtered out by the image 

quality tool, given in accuracy, sensitivity, specificity, and AUC with a 95% confidence 

interval. 

 

 Sensitivity (C.I) Specificity (C.I) AUC (C.I) 

Filtered out 0.787 (0.710, 0.849) 0.793 (0.709, 0.860) 0.857 (0.803, 0.898) 

Remained 0.854 (0.838, 0.869) 0.904 (0.890, 0.917) 0.948 (0.941, 0.955) 
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