Article Text

Download PDFPDF
What can anisometropia tell us about eye growth?
  1. Ian Flitcroft1,
  2. Sara Mccullough2,
  3. Kathryn Saunders2
  1. 1Ophthalmology, Children’s University Hospital, Dublin, Ireland
  2. 2Centre for Optometry and Vision Science Research, University of Ulster, Coleraine, Londonderry, UK
  1. Correspondence to Ian Flitcroft, Department of Ophthalmology, Children’s University Hospital, Dublin, Ireland; ian.flitcroft{at}


Background/Aims Both eyes of one individual share the same environment and genes. We examined interocular differences in biometry to determine the potential role of other factors in refractive development.

Methods 362 subjects (6–7 years) from the Northern Ireland Childhood Errors of Refraction study were studied. Cycloplegic autorefraction was measured with a Shin-Nippon open-field autorefractor. Axial length and corneal curvature were measured with a Zeiss IOLMaster.

Results 257 subjects had an interocular difference of <0.50 D (ISO group) and 105 (29%) a difference of ≥0.50 D (ANISO group). Twenty-five subjects (6.9%) had anisometropia ≥1.00 D and 9 (2.5%) had anisometropia ≥1.50 D. The two groups, ISO and ANISO, showed different refractive distributions (p=0.001) with the ISO group showing a nearly Gaussian distribution and the ANISO group showing positive skew, a hyperopic shift and a bi-Gaussian distribution. A marker of emmetropisation is the poor correlation between refraction and corneal curvature seen in older children. There was no significant correlation between refraction and corneal curvature of each eye in the ISO group (r=0.09, p=0.19), but these parameters were significantly correlated in the ANISO group (r=0.28, p=0.004).

Conclusion In young children, small degrees of anisometropia (≥0.5 D) are associated with impaired emmetropisation. This suggests that anisometropia is a marker for poorly regulated eye growth, indicating that, in addition to environmental and genetic influences on eye growth, stochastic processes contribute to refractive outcomes.

  • Epidemiology
  • Optics and Refraction

Statistics from


  • Twitter Kathryn Saunders @PlusTwoFifty.

  • Contributors IF, SMcc and KS: conception or design of the work, or the acquisition, analysis or interpretation of data; drafting the work or revising it critically for important intellectual content; final approval of the version published; agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

  • Funding The Northern Ireland Childhood Errors of Refraction (NICER) study, Phase 1, was funded by a research grant to KS from the College of Optometrists (London, UK).

  • Competing interests None declared.

  • Ethics approval The NICER study was approved by the University of Ulster’s Research Ethics Committee Ref number: REC/05/121.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement Data are available upon reasonable request.

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.