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ABSTRACT
Purpose  The goal was to develop a fully automated 
grading system for the evaluation of punctate epithelial 
erosions (PEEs) using deep neural networks.
Methods  A fully automated system was developed to 
detect corneal position and grade staining severity given 
a corneal fluorescein staining image. The fully automated 
pipeline consists of the following three steps: a corneal 
segmentation model extracts corneal area; five image 
patches are cropped from the staining image based 
on the five subregions of extracted cornea; a staining 
grading model predicts a score for each image patch 
from 0 to 3, and automated grading score for the whole 
cornea is obtained from 0 to 15. Finally, the clinical 
grading scores annotated by three ophthalmologists 
were compared with automated grading scores.
Results  For corneal segmentation, the segmentation 
model achieved an intersection over union of 0.937. For 
punctate staining grading, the grading model achieved a 
classification accuracy of 76.5% and an area under the 
receiver operating characteristic curve of 0.940 (95% 
CI 0.932 to 0.949). For the fully automated pipeline, 
Pearson’s correlation coefficient between the clinical 
and automated grading scores was 0.908 (p<0.01). 
Bland-Altman analysis revealed 95% limits of agreement 
between the clinical and automated grading scores of 
between −4.125 and 3.720 (concordance correlation 
coefficient=0.904). The average time required for 
processing a single stained image during pipeline was 
0.58 s.
Conclusion  A fully automated grading system was 
developed to evaluate PEEs. The grading results may 
serve as a reference for ophthalmologists in clinical trials 
and residency training procedures.

INTRODUCTION
Punctate epithelial erosions (PEEs) are a feature of 
many ocular surface diseases and present as dots on 
the corneal epithelium. PEEs can reflect the physi-
ology and function of the epithelium and are easily 
observed and assessed through corneal staining by 
slit-lamp microscopy.1

Corneal staining uses dyes that are applied on the 
ocular surface. Sodium fluorescein and lissamine 
green are two common dyes in clinical practice, 
the former of which is typically used to highlight 
corneal defects.2 A dye-impregnated fluorescein 
paper strip is instilled into the eye, and punctate 
dots can be visualised under cobalt blue filter illu-
mination. Currently, the most commonly used 

corneal fluorescein staining techniques in clinical 
trials are the Oxford scheme and the Nation Eye 
Institute/Industry (NEI) workshop grading system. 
The Oxford scheme was designed to evaluate the 
severity of dry eye syndrome3; however, it produces 
different features from those in the reference panel, 
and clinicians, especially at the junior level, may 
have trouble labelling images.4 The NEI scale 
divides the cornea into five zones and summarises 
the corneal staining in each zone5; it combines both 
the area and intensity of the entire cornea simulta-
neously. Nevertheless, the NEI scale remains highly 
subjective and has low accuracy.

Digital image analysis can provide objective 
and accurate results and more sensitive and reli-
able assessments than those produced by subjec-
tive grading.6 Computer-aided diagnosis has been 
applied to PEEs, and many semiautomated grading 
systems for PEEs have been developed.7–9 However, 
these systems still require manual assistance.

Recently, deep neural networks have become 
widely used for medical image analysis. According 
to the literature, deep neural networks have been 
applied for a variety of retinal diseases and glau-
coma.10–12 Nevertheless, only one article describes 
an automatic PEEs grading system using a deep 
convolutional neural network.13

In this study, corneal fluorescein-stained samples 
were observed under cobalt blue filter illumination 
and photography. Digital photographs were graded 
by three ophthalmologists (two independent resi-
dent ophthalmologists and re-examination by a 
blinded specialist) according to the NEI scale and 
then learnt by deep neural networks. Then, a new, 
fully automated grading system was developed to 
evaluate PEEs. This system will improve the grading 
precision of existing methods and help train junior 
ophthalmologists.

MATERIALS AND METHODS
Subjects
This was a retrospective study. Participants were 
identified by two experienced ophthalmologists 
(JH and G-GX) based on the following inclusion 
criteria: healthy cornea and cornea with PEEs only. 
Subject who had (1) filamentosa keratitis; (2) a 
history of corneal transplantation or (3) a condition 
that the investigator felt may have confounded the 
study results, may have put the subject at significant 
risk, or may have interfered significantly with the 
subject’s participation in the study were excluded.
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Image capture technique
A sodium fluorescein ophthalmic strip (Meizilin Pharmaceutical 
Co, Liaoning, China) was made wet with a single drop of oflox-
acin ophthalmic solutions; once, the drop had saturated the strip, 
any excess fluid was shaken off. The lower eyelid was pulled 
down, and the strip was gently touched onto the lower tarsal 
conjunctiva (once only). The patients were asked to gently blink 
to distribute the dye across the ocular surface. A photograph of 
the entire cornea was taken immediately after gentle blinking.

Images of the entire cornea were acquired with a photo slit-
lamp system (BX 900, Haag-Streit, Bern, Switzerland) with a 
blue filter. The magnification was set to 10× to show all the 
corneal sections. Tear-layer reflection was minimisedusing a 
diffused flash system. The ISO, flash intensity, slit beam, illumi-
nation angle and other camera parameters were constant across 
all subjects. All images were captured in RAW format to maxi-
mise the acquired information. These pictures were transmitted 
to a personal computer and saved as JPG files (3456×2304 
pixels, 24-bit, RGB).

Image labelling
Two independent resident ophthalmologists (J-HQ and C-DL) 
selected all corneal sections and graded the photographs with 
the NEI scale. Each ophthalmologist independently graded the 
photographs on their own monitor, which was set to a resolution 
of 1920×1080; the ophthalmologists used a medical annotation 
website developed by the authors for the labelling within the 
illumination rooms in their clinics without any time limitations.

The grading system recommended by the NEI divides the 
cornea into five zones (central, superior, temporal, nasal and 
inferior), and for each zone, the severity of corneal fluorescein 
staining is graded on a scale from 0 to 3 based on the reference 
figures. Therefore, the maximum total score for an entire cornea 
is 15.

For the corneal area annotations, an initial circle consisting 
of five regions was generated, and the ophthalmologists could 
adjust the circle to fit the position and size of the corneal area. 
A corneal area annotation example and its corresponding binary 
ground truth are shown in figure  1. For grading annotation, 
ophthalmologists could assign a score from 0 to 3 for each 
subregion. All scores were checked again by a blinded specialist 
(R-MP). During this checking, the blinded specialist picked 
out the images assigned inconsistent scores by the two resident 
ophthalmologists, reviewed those images, and gave final scores 
based on the specialist’s own judgement; for images assigned 
consistent scores, the specialist did not change their scores. The 
final score for each subregion was then regarded as the ground 
truth score.

Datasets
A total of 1046 images were collected. Among these, 283 
images displaying corneal ulcers, filaments, ambiguous corneal 
limbus or blurring were excluded. The remaining 763 images 
were used as the corneal fluorescein staining dataset. The 
dataset was randomly divided into three parts: a training set 
(534 images) to train the deep neural networks, a validation set 
(76 images) to tune the hyperparameters of the training process 
(such as early stopping conditions and the learning rate) and 
a testing set (153 images) to evaluate the performance of the 
trained models. The process of dataset creation is shown in 
figure 2.

To improve the performance and generalisability of the devel-
oped cornea segmentation model, an external public dataset, the 
SUSTech-SYSU dataset, was used as an additional training set 
(only for the cornea segmentation task).14 The SUSTech-SYSU 
dataset contains 712 fluorescein staining images and the corre-
sponding segmentation labels of the corneal areas.

Fully automated grading system
In this study, a fully automated grading system for the assess-
ment of corneal punctate staining was developed based on deep 
learning. The pipeline of the automated grading system is shown 
in figure  3. First, given a corneal fluorescein staining image, 
the corneal segmentation model extracts an elliptical corneal 
boundary. Then, based on this extracted elliptical boundary, 
the corneal area is separated into five subregions. Each image 
patch is determined by the minimum bounding rectangle of each 
subregion. The associated five image patches are cropped from 
the original staining image for further staining grading. Finally, 
the staining grading model extracts deep features and predicts 
a score for each input image patch. The total score of the orig-
inal staining image is calculated after the grading process is 
completed for all five image patches.

Figure 1  An example of a corneal area annotation. (A) Corneal fluorescein staining image; (B) annotated image and (C) ground truth.

Figure 2  The process of dataset creation.
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Corneal segmentation
The cornea segmentation task was formulated as a binary segmen-
tation problem, where the corneal area belongs to the foreground 
and other areas belong to the background. A corneal segmenta-
tion model was established to segment the corneal area from the 
corneal fluorescein staining image. Recently, fully convolutional 
networks (FCNs) have shown great progress in semantic segmen-
tation and medical image segmentation tasks. FCNs typically use 
multiple convolution layers to extract features and downsize the 
resolution of feature maps, and then use transposed convolution 
layers to recover the resolution of output feature maps. Specifi-
cally, the convolution layer is composed of several convolution 
units, each of which can be seen as a filter and performs a convo-
lution operation with the input image or feature maps. The first 
few convolution layers extract shallow features, such as edges 
and corners, and the deeper convolution layers extract high-level 
semantic features. U-Net and D-LinkNet, which follow the FCN 
architecture, were investigated to determine their applicability 

to corneal segmentation.15 16 As shown in figure 4, the corneal 
segmentation model has an encoder–decoder architecture.

The encoder uses a ResNet34 backbone (excluding the last 
basic block) and a dilation block to extract image features.17 
The adopted ResNet34 backbone, which contains three residual 
blocks, is relatively light and easily converges. The dilation block 
is composed of four stacked dilated convolution layers with dila-
tion rates of 1, 2, 4 and 8, each of which is followed by a recti-
fied linear unit.18 The dilated convolution layers are based on 
the original convolution layer and are implemented by adding 
zeros between each number in the original convolution kernel; 
the number of zeros minus 1 is called the dilation rate. The orig-
inal convolution layer is a special dilated convolution layer with 
a dilation rate of 1. The intermediate feature maps produced by 
each dilated convolution layer are summed to generate the final 
output of the dilation block. Using the dilation block can increase 
the size of the receptive fields of the resulting feature maps and 
aggregate multiscale context information without reducing the 

Figure 3  Pipeline of the fully automated grading system. (A) Corneal fluorescein staining image; (B) extracted elliptical corneal boundary and five 
subregions; (C) associated five generated image patches and (D) punctate staining grades for each patch.

Figure 4  Architecture of the corneal segmentation model. ReLU, rectified linear unit.
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resolution of the output feature maps. The decoder adopts the 
design of the U-Net decoder, which uses transposed convolu-
tion layers to upscale the resolutions of the feature maps and 
skip connections to concatenate the correspondingly encoded 
feature maps. This helps to restore precise segmentation features 
with detailed information. Finally, a convolution layer is used 
to generate the final segmentation prediction with two output 
channels.

During the training process, the corneal segmentation model 
is learnt under supervision of the ground truth segmentation 
using a pixel-wise cross-entropy loss. In the inference process, 
a softmax layer is applied to the segmentation prediction along 
the channel axis, to classify each pixel of the prediction map as 
belonging to either the corneal area or the background, and a 
binary mask is obtained for the original staining image. As the 
shape of the cornea is usually formulated as an ellipse and the 
predicted corneal area has an irregular shape in the binary mask, 
contour extraction and ellipse fitting are proposed to produce 
an elliptical corneal boundary. The centre coordinates, long axis 
and short axis of the detected elliptical boundary are recorded 
to determine the position of the cornea and its five subregions.

Generation of the image patches to be graded
Referring to the NEI scale, the proposed grading system divides 
the corneal area into five parts and assigns a score to each part. 
Based on the detected elliptical boundary of the corneal area, the 
five subregions can be calculated by a prebuilt positional mode. 
The first subregion is determined by an inner ellipse located at 
the centre of the detected cornea, whose axis is one-third of 
the axis of the detected elliptical boundary. The remaining four 
subregions are determined by four line segments that partition 
the ring into four sectors of 90° each.

Because each subregion should be graded separately, five image 
patches are cropped from the original staining image, where 
each image patch is determined by the minimum bounding rect-
angle of each subregion. More specifically, for each image patch, 
the intensity values of the pixels that do not fall into the corre-
sponding subregion are set to zero, which guarantees the exact 
representations of the five subregions.

Punctate staining grading
The punctate staining grading task for each generated image 
patch was regarded as a four-class classification problem, where 
the four-class labels correspond to four severity scores (0–3). A 
staining grading model was employed for classification, taking 
cropped and resized image patches with sizes of 512×512×3 
as inputs.

In recent years, deep convolutional neural networks have 
demonstrated amazing performance on many image classifica-
tion tasks and have even surpassed human experts with some 
large datasets. Models pretrained on such datasets learn general 
features from various images and thus can be transferred to 
specific tasks in which only a relatively small dataset is avail-
able. Inspired by this, in this study, ResNet34 was adopted 

as the architecture of the proposed staining grading model, 
which was trained by fine-tuning the pretrained parameters on 
the ImageNet dataset to adapt them to the proposed grading 
task.17 19 Because the input size for the staining grading model 
(512×512×3) differs from the original input size for ResNet34 
(224×224×3), the intermediate feature maps produced by the 
last basic block have a relatively large resolution of 16×16×512, 
where the dimensions indicate height, width and channel. To 
reduce the complexity of the model, an adaptive pooling layer 
is used to downsize the obtained feature maps and produce a 
fixed-size feature vector. Finally, the feature vector is fed into 
a fully connected layer with four output nodes to represent the 
four classes.

During training, given the imbalance in the samples among 
the different classes (shown in table 1), a weighted cross-entropy 
loss is employed with predefined weights of 0.1, 0.2, 0.5 and 
0.2. During inference, a softmax layer is used after the final 
fully connected layer to produce probability estimates for the 
four class labels, and the class label with the maximum prob-
ability value determines the predicted score. When preparing 
input image patches during the training process, the positions 
of the five subregions were based on the ground truth corneal 
boundary, while for the fully automated grading pipeline during 
the inference process, they were based on the detected elliptical 
boundary of the corneal area.

Data augmentation and experimental details
For the corneal segmentation model experiment, a combined 
training dataset consisting of 1246 corneal fluorescein staining 
images (534 images from the training set and 712 images from 
the SUSTech-SYSU dataset) was used to train the model, while 
the validation set was used to assess the convergence of the 
model every few training epochs. As the original high-resolution 
images took up a large amount of graphics processing unit (GPU) 
memory and the corneal area covers nearly one quarter of the 
image area, all images were resized to 384×256 pixels. The pixel 
intensities were normalised to values of 0-1 for better conver-
gence. Data augmentation methods, including random horizontal 
flipping, vertical flipping and jittering in brightness, contrast 
and sharpness, were used to enhance the training dataset. The 
ResNet34 backbone in the encoder was initialised by the param-
eters pretrained on ImageNet, while other layers adopted the 
Kaiming initialisation algorithm.20 During training, the Adam 
optimiser was used with a batch size of 8 and a weight decay of 
0.0005. The learning rate started at 0.001 and decreased gradu-
ally with a step size of 5000 iterations and a factor of 0.25. After 
100 epochs, the model that achieved the best performance on 
the validation set was selected for further evaluation.

For the staining grading model experiment, a set of image 
patches were cropped from the corneal fluorescein staining 
images at original resolutions (see details in the Generation of 
the image patches to be graded section) in the original training 
set, validation set, and testing set and then collected to train, 
validate and test the model, respectively. For the collected data, 

Table 1  Numbers of image patches before and after offline augmentation in the training data for different classes

Class Numbers of image patches without offline augmentation
Numbers of image patches with offline 
augmentation

Score 0 1350 8100

Score 1 616 3696

Score 2 262 1572

Score 3 442 2652
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each image patch had a ground truth score of 0–3 (referring to 
the ground truth score of its corresponding subregion). All image 
patches were resized to 512×512 pixels, and the image pixels 
are normalised to the values of 0–1. The training data were rela-
tively small and demonstrated an imbalance in the representa-
tion of the different classes: 1350 score 0 image, 616 score 1 
image, 262 score 2 images and 442 score 3 images. To reduce the 
risk of overfitting, data augmentation methods were employed 
as follows. First, when cropping the image patches from the 
original staining images, the ground truth corneal boundary 
was shifted and resized randomly for better generalisation while 
randomly rescaling its centre coordinates, long axis and short 
axis in the range [−20, 20]. After these offline augmentation 
methods were executed, the number of image patches was 
augmented to six times the amount in the original training data, 
as shown in table 1. Subsequently, the input image patches were 
randomly flipped, rotated by 0°/90°/180°/270° and jittered in 
brightness, contrast, sharpness and colour. During training, the 
Adam optimiser was used with a batch size of 50 and a weight 
decay of 0.0005. The learning rate started from 0.0001 and 
decreased gradually with a step size of 1200 iterations and a 
factor of 0.25. The grading model was trained with 15 epochs.

Both the corneal segmentation model and the staining grading 
model were implemented with the PyTorch framework, and 
trained on a RedHat operating system with a 12 GB NVIDIA 
Tesla K80 GPU.

Evaluation metrics for the deep models
To evaluate the performance of the proposed model on the 
corneal segmentation task, the intersection over union (IoU) was 
calculated as follows

	﻿‍
IoU = area

(
ECpred∩ECgt

)
area

(
ECpred∪ECgt

)
‍�

where ‍ECpred‍ is the prediction result of the detected elliptical 
cornea for the original staining images and ‍ECgt‍ is the ground 
truth elliptical cornea. The IoU is defined as the ratio of the inter-
section of two regions to the union of the two regions. Thus, the 
IoU ranges from 0.0 to 1.0, where larger values indicate higher 
coincidence between the two regions. The IoU was also calcu-
lated between the corneal area annotations made by the two resi-
dent ophthalmologists for model–human comparison.

For the staining grading model, the applied performance 
metrics included a confusion matrix, the classification accuracy, 
the area under the receiver operating characteristic curve (AUC) 
and the mean absolute error (MAE). Specifically, the confusion 
matrix reports information on ground truth results and predic-
tion results for multiclass classification. The classification accu-
racy is calculated as the ratio of the number of correctly classified 
samples to the total number of samples in the dataset, where 
a correctly classified sample is that for which the ground truth 
score matches the predicted score. When plotting the receiver 
operating characteristic (ROC) curve, the micro-averaged 
version was used to compute the AUC. Standard ROC curves are 
graphical plots used to assess the performance of a binary classi-
fier, where larger AUC values (range between 0.5 and 1.0) indi-
cate better performance. However, the staining grading task is a 
multiclass classification, and so a variant version of the regular 
ROC curve was used, that is, the micro-averaged version. The 
micro-averaged version calculates global metrics by considering 
each element of the label indicator matrix as a label.21 The MAE 
indicates the distance between the ground truth score ‍S

i
gt‍ and the 

corresponding predicted score ‍S
i
pred‍, and is defined as

	﻿‍
MAE = 1

N

N∑
i=1

���Sipred − Sigt
���
‍�

where ﻿‍N‍ is the size of the dataset. Considering an extreme case 
in which a sample with a true label of 0 is classified as having a 
score of 4 versus score of 1, the MAE metric is more helpful for 
guiding the clinical application of the grading model.

Statistical analysis
To evaluate the performance of the proposed fully automated 
grading pipeline, the clinical grading score and the automated 
grading score were introduced. For each staining image, the 
sum of ground truth scores of the five subregions was taken 
as the clinical grading score (0–15). For the fully automated 
grading system, each input staining image was first fed to the 
corneal segmentation model to detect the elliptical corneal area, 
and then its five subregions were extracted and graded by the 
staining grading model. After the fully automated process was 
completed, the total score of the input image was obtained and 
defined as the automated grading score (0–15).

Statistical analysis was performed using SPSS V.18.0 (SPSS, 
Chicago, IL, USA). The correlation between the clinical grading 
scores and the automated grading scores was examined using 
the Pearson test. The interobserver correlation was also calcu-
lated between the manual grading scores (0–15) given by the 
two resident ophthalmologists using the Pearson test. All tests 
were two-tailed, p<0.05 was considered statistically significant, 
and p<0.01 was considered very statistically significant. To eval-
uate the agreement between the clinical grading scores and auto-
mated grading scores, Bland-Altman analysis was used.

RESULTS
The cornea segmentation model and the staining grading model 
were evaluated on the original testing set, which included 153 
staining images and did not overlap with the training data or 
validation data of the two models. A total of 765 image patches 
were obtained to assess the grading model. More importantly, 
to demonstrate the performance of the fully automated grading 
pipeline, an experiment involving the direct prediction of auto-
mated grading scores for the 153 testing images using the two 
models described above was conducted.

On the corneal segmentation task, the segmentation model 
achieved an IoU of 0.937, while that between the annotations 
made by the two resident ophthalmologists was 0.915. Thus, 
the difference between the detected elliptical cornea and the 
ground truth elliptical cornea was lower than that between the 
annotations of the two resident ophthalmologists. Regarding the 
punctate staining grading task, the confusion matrix is given in 
figure 5A, and the classification accuracy of the grading model 
was 76.5%. Figure 5B shows the normalised confusion matrix, 
showing that class 0 was the easiest to distinguish while more 
errors were obtained for class 1 and class 2. The micro-averaged 
ROC curve is shown in figure 6, yielding an AUC of 0.940 (95% 
CI, 0.932 to 0.949). The grading model also achieved an MAE 
of 0.280.

For the fully automated pipeline, the Pearson’s correlation 
coefficient between the clinical and automated grading scores 
was 0.908 (p<0.01, figure 7A). For comparison, the Pearson’s 
correlation coefficient between the manual scores of the two 
resident ophthalmologists was 0.781. A total of 77 observations 
(dark flowers 36 observations and light flowers 41 observations) 
showed a good agreement between the clinical and automated 
grading (figure  7B). In addition, the results of Bland-Altman 
analysis of the clinical and automated grading scores is given 
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in figure 8. The 95% limits of agreement between the clinical 
and automated grading scores were between −4.125 and 3.720 
(concordance correlation coefficient=0.904). Furthermore, the 
average time required for processing a single staining image 
in the fully automated grading pipeline was 0.58 s. The visual 
results of some example images from the testing set are shown in 
figure 9, where figure 9A presents comparisons and IoUs of the 
detected elliptical corneal boundary (red ellipse) to the ground 
truth corneal boundary (green ellipse), and figure 9B gives the 
predicted scores for five extracted subregions.

DISCUSSION
Corneal fluorescein staining is a useful method for evaluating 
ocular surfaces, and its assessment outcomes are needed for 
conducting multicentre studies or large-scale clinical trials. 
Various clinical grading methods for corneal staining have been 
introduced to compare the images of patients’ eyes with refer-
ence images. As reported earlier, the Oxford scheme, the NEI 
scale, the area–density combination index and ocular staining 
score of Sjögren’s International Collaborative Clinical Alliance 
are all useful methods for evaluating corneal staining.4 However, 

all corneal staining systems are difficult to implement in clinical 
practice. The proposed automated PEEs system is a relatively 
objective assessment of corneal fluorescein staining. The use of 
imaging techniques and associated software analysis as a comple-
ment or substitute for clinical scoring is already widespread in 
ophthalmology. These methods provide increased efficiency 
when processing clinical data and standardise the grading proce-
dure across multicentre clinical trials.

The proposed automated PEEs grading system was shown 
to be capable of grading the PEEs condition automatically. A 
high correlation coefficient (r=0.908, p<0.01) was observed 
between the estimated and clinical grades. Pearson’s correla-
tion coefficient between the manual scores of the two resident 
ophthalmologists was 0.781, which shows that in the clinic, 
the manual grading process is easily influenced by subjectivity. 
Additionally, the prediction results from the proposed system are 
strongly related with the clinical results from the specialist. The 
IoU of the segmentation model was much higher than that of 
resident ophthalmologists (0.937 vs 0.915). This indicates that 
the corneal segmentation model can extract accurate corneal 
areas for further grading tasks and play an important role in the 
fully automated system, where manual input or intervention is 
not required at all. As seen in the normalised confusion matrix 
(figure 5B), class 1 and class 2 were more easily misclassified. 
One reason for this may be that the details in images with a 
score of 1 (slight punctate staining) may be ignored, leading to a 
prediction of a score of 0. Another reason could be that images 
with a score of 1 and a score of 2 were seen as too similar by the 
staining grading model. Furthermore, the average time required 
to process a single image was 0.58 s, faster than that achieved 
by the method proposed in a previously published study (6.25 
s).7 The results of these analyses illustrate that the fully auto-
mated grading system could potentially assist ophthalmologists 
in performing faster and more accurate diagnoses.

The correlation between the estimated grades and the clinical 
grades is higher than that in the studies by Chun et al,7 Rodriguez 
et al8 and Bunya et al9 (r=0.90, r=0.88 and r=0.83, respec-
tively), all of which involved semiautomated systems. The paper 
written by Su et al13 was the only one focusing on an automatic 
PEEs grading system using deep neural networks and achieved a 

Figure 5  Confusion matrices. (A) Confusion matrix of the staining grading model and (B) normalised confusion matrix.

Figure 6  Receiver operating characteristic curve of the staining 
grading model.
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correlation between the estimated grades and the clinical grades 
of 0.85. The corneal grading system proposed in above paper 
may have shortcomings. Because the corneal limbus is not fully 
exposed in the images, the corneas may be inaccurately graded. 
As the grades are highly correlated with the clinical results, our 
grading results may serve as a reference for ophthalmologists in 
clinical trials and residency training procedures.

CONCLUSIONS
Using deep neural networks, a fully automated grading system 
was developed for evaluating PEEs. The automated PEEs grading 
system could serve as an excellent assistant in clinical and multi-
centre clinical trials.

Limitations
The BX 900 photo slit-lamp system uses blue light to excite fluo-
rescein molecules to highlight damage to the ocular surface after 
their instillation. According to the previous research, the wave-
length of blue light and the use of a yellow cut-off filter to remove 
extraneous blue light are critical to the optimal visualisation of 
ocular surface staining.22 If subjective grading was performed 
with images using a yellow cut-off filter, the correlation between 
subjective and objective assessment might be stronger. What’s 
more, the NEI scale is not linear (with the amount and type of 
staining combined in one scale) and limited in sensitivity which 
will have impacted the comparison with objective grading. The 

Figure 8  Bland-Altman plot comparing the clinical and automated 
grading scores.

Figure 9  Example images from the testing set. (A) Comparisons and 
IoUs of the detected elliptical corneal boundary (red ellipse) to the 
ground truth corneal boundary (green ellipse); (B) the predicted scores 
for the five extracted subregions. AGS is the sum of five predicted 
scores. AGS, automated grading score; IoU, intersection over unions.

Figure 7  Relationship between the clinical and automated grading scores. (A) Correlation between the clinical and automated grading scores and 
(B) density-distribution sunflower plot between the clinical and automated grading scores.
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images were obtained from individuals from a single ethnic 
background in a single centre; the corneal fluorescein staining 
dataset thus needs to be expanded. The results obtained using 
the proposed PEEs grading system should be further confirmed 
through large-scale clinical trials.
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