Article Text
Abstract
Aims Choroidal neovascularisation (CNV) in patients with X-linked retinoschisis (XLRS) has been poorly documented. This study aims to investigate the prevalence and clinical characteristics of CNV in patients with XLRS, as well as analyse the preliminary genotype–phenotype correlation.
Methods A retrospective case series of patients with genetically confirmed XLRS was included. Demographic, clinical and genetic features were analysed, with a comparison between CNV and non-CNV eyes.
Results Among 185 eyes of 129 patients with XLRS, the prevalence of CNV was 8.1% (15/185). The mean diagnostic age of all patients with CNV is 5.1±2.56 years. CNV eyes exhibited a mean best-corrected visual acuity (BCVA) (logarithm of the minimal angle of resolution) of 1.37±0.74. All CNVs were classified as subretinal and active. Peripapillary CNVs accounted for 80.0% (12/15), while subfoveal CNVs accounted for 20.0% (3/15). In CNV eyes, the prevalence of macular atrophy (5/15, 33.3%, p=0.013) and bullous peripheral schisis (14/15, 93.3%, p=0.000) was higher compared with non-CNV eyes. Additionally, CNV eyes exhibited poorer integrity of the outer retina and BCVA (p=0.007) compared with non-CNV eyes. All 15 eyes with CNV underwent anti-vascular endothelial growth factor (anti-VEGF) therapy. Genotype analysis revealed that 7 of 10 patients (70.0%, 10 eyes) were predicted to have missense variants, while 3 of 10 patients (30.0%, 5 eyes) exhibited severe variants.
Conclusions The prevalence of CNV in XLRS eyes was found to be 8.1%. All CNVs secondary to XLRS were active and classified as type 2. CNV eyes demonstrated poorer visual function and compromised retinal structures. Anti-VEGF therapy demonstrated effectiveness in treating XLRS-CNVs. No significant genotype–phenotype correlation was established.
- Retina
- Degeneration
- Genetics
- Neovascularisation
- Vitreous
Data availability statement
All data relevant to the study are included in the article or uploaded as supplementary information.
Statistics from Altmetric.com
Data availability statement
All data relevant to the study are included in the article or uploaded as supplementary information.
Footnotes
LZ and XL contributed equally.
Contributors Study concept and design and drafting of the manuscript: XD, LZ. Data collection: LZ, XL. Analysis and interpretation of the data: LZ, LS, XZ and SK. Revision of the manuscript: XD, LZ and XL. Making the decision to submit the paper for publication: LZ, XL, LS, XZ, SK and XD. XD is responsible for the overall content as guarantor.
Funding This study is supported by the Construction Project of High-Level Hospitals in Guangdong Province (303020107, 303010303058); the National Natural Science Foundation of China (82271092); Guangdong Basic and Applied Basic Research Foundation (2023A1515010430).
Competing interests None declared.
Provenance and peer review Not commissioned; externally peer reviewed.
Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.