Skip to main content

Gene Therapy for Stargardt Disease Associated with ABCA4 Gene

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 801))

Abstract

Mutations in the photoreceptor-specific flippase ABCA4 lead to accumulation of the toxic bisretinoid A2E, resulting in atrophy of the retinal pigment epithelium (RPE) and death of the photoreceptor cells. Many blinding diseases are associated with these mutations including Stargardt’s disease (STGD1), cone-rod dystrophy, retinitis pigmentosa (RP), and increased susceptibility to age-related macular degeneration. There are no curative treatments for any of these dsystrophies. While the monogenic nature of many of these conditions makes them amenable to treatment with gene therapy, the ABCA4 cDNA is 6.8 kb and is thus too large for the AAV vectors which have been most successful for other ocular genes. Here we review approaches to ABCA4 gene therapy including treatment with novel AAV vectors, lentiviral vectors, and non-viral compacted DNA nanoparticles. Lentiviral and compacted DNA nanoparticles in particular have a large capacity and have been successful in improving disease phenotypes in the Abca4 -/- murine model. Excitingly, two Phase I/IIa clinical trials are underway to treat patients with ABCA4-associated Startgardt’s disease (STGD1). As a result of the development of these novel technologies, effective therapies for ABCA4-associated diseases may finally be within reach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Illing M, Molday LL, Molday RS (1997) The 220-kDa rim protein of retinal rod outer segments is a member of the ABC transporter superfamily. J Biol Chem 272(15):10303–10310

    Article  PubMed  CAS  Google Scholar 

  2. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH (1999) Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98(1):13–23

    Article  PubMed  CAS  Google Scholar 

  3. Molday RS (2007) ATP-binding cassette transporter ABCA4: molecular properties and role in vision and macular degeneration. J Bioenerg Biomembr 39(5-6):507–517

    Article  PubMed  CAS  Google Scholar 

  4. Conley SM, Cai X, Makkia R, Wu Y, Sparrow JR, Naash MI (2012) Increased cone sensitivity to ABCA4 deficiency provides insight into macular vision loss in Stargardt’s dystrophy. Biochim Biophys Acta 1822(7):1169–1179

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Han Z, Conley SM, Makkia RS, Cooper MJ, Naash MI (2012) DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. J Clin Invest 122(9):3221–3226

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci USA 97(13):7154–7159

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Radu RA, Mata NL, Nusinowitz S, Liu X, Sieving PA, Travis GH (2003) Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Natl Acad Sci USA 100(8):4742–4747

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Azarian SM, Megarity CF, Weng J, Horvath DH, Travis GH (1998) The human photoreceptor rim protein gene (ABCR): genomic structure and primer set information for mutation analysis. Hum Genet 102(6):699–705

    Article  PubMed  CAS  Google Scholar 

  9. Kong J, Kim SR, Binley K, Pata I, Doi K, Mannik J, Zernant-Rajang J, Kan O, Iqball S, Naylor S, Sparrow JR, Gouras P, Allikmets R (2008) Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther 15(19):1311–1320

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Lai Y, Yue Y, Duan D (2010) Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome > or = 8.2 kb. Mol Ther 18(1):75–79

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D, Kim SR, Maguire A, Rex TS, Di Vicino U, Cutillo L, Sparrow JR, Williams DS, Bennett J, Auricchio A (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 118(5):1955–1964

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239

    Article  PubMed  CAS  Google Scholar 

  13. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL, Windsor EA, Conlon TJ, Sumaroka A, Roman AJ, Byrne BJ, Jacobson SG (2009) Vision 1 year after gene therapy for Leber’s congenital amaurosis. N Engl J Med 361(7):725–727

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell’Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Hirsch ML, Agbandje-McKenna M, Samulski RJ (2010) Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol Ther 18(1):6–8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Wu Z, Yang H, Colosi P (2010) Effect of genome size on AAV vector packaging. Mol Ther 18(1):80–86

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Balaggan KS, Binley K, Esapa M, Iqball S, Askham Z, Kan O, Tschernutter M, Bainbridge JW, Naylor S, Ali RR (2006) Stable and efficient intraocular gene transfer using pseudotyped EIAV lentiviral vectors. J Gene Med 8(3):275–285

    Article  PubMed  CAS  Google Scholar 

  18. Miyoshi H, Takahashi M, Gage FH, Verma IM (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 94(19):10319–10323

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Greenberg KP, Geller SF, Schaffer DV, Flannery JG (2007) Targeted transgene expression in muller glia of normal and diseased retinas using lentiviral vectors. Invest Ophthalmol Vis Sci 48(4):1844–1852

    Article  PubMed Central  PubMed  Google Scholar 

  20. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5):346–358

    Article  PubMed  CAS  Google Scholar 

  21. Sarkis C, Philippe S, Mallet J, Serguera C (2008) Non-integrating lentiviral vectors. Curr Gene Ther 8(6):430–437

    Article  PubMed  CAS  Google Scholar 

  22. Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI (2006) Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS One 1:e38

    Article  PubMed Central  PubMed  Google Scholar 

  23. Han Z, Koirala A, Makkia R, Cooper MJ, Naash MI (2012) Direct gene transfer with compacted DNA nanoparticles in retinal pigment epithelial cells: expression, repeat delivery and lack of toxicity. Nanomedicine (Lond) 7(4):521–539

    Article  CAS  Google Scholar 

  24. Koirala A, Makkia RS, Cooper MJ, Naash MI (2011) Nanoparticle-mediated gene transfer specific to retinal pigment epithelial cells. Biomaterials 32(35):9483–9493

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Fink TL, Klepcyk PJ, Oette SM, Gedeon CR, Hyatt SL, Kowalczyk TH, Moen RC, Cooper MJ (2006) Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther 13(13):1048–1051

    Article  PubMed  CAS  Google Scholar 

  26. Konstan MW, Davis PB, Wagener JS, Hilliard KA, Stern RC, Milgram LJ, Kowalczyk TH, Hyatt SL, Fink TL, Gedeon CR, Oette SM, Payne JM, Muhammad O, Ziady AG, Moen RC, Cooper MJ (2004) Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther 15(12):1255–1269

    Article  PubMed  CAS  Google Scholar 

  27. Padegimas L, Kowalczyk TH, Adams S, Gedeon CR, Oette SM, Dines K, Hyatt SL, Sesenoglu-Laird O, Tyr O, Moen RC, Cooper MJ (2012) Optimization of hCFTR Lung Expression in Mice Using DNA Nanoparticles. Mol Ther 20(1):63–72

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Yurek DM, Fletcher AM, Smith GM, Seroogy KB, Ziady AG, Molter J, Kowalczyk TH, Padegimas L, Cooper MJ (2009) Long-term transgene expression in the central nervous system using DNA nanoparticles. Mol Ther 17(4):641–650

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Cai X, Conley SM, Nash Z, Fliesler SJ, Cooper MJ, Naash MI (2010) Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB J 24(4):1178–1191

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Koirala A, Makkia RS, Conley SM, Cooper MJ, Naash MI (2013) S/MAR-containing DNA nanoparticles promote persistent RPE gene expression and improvement in RPE65-associated LCA. Hum Mol Genet 22(8):1632–1642

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Han Z, Conley SM, Makkia R, Guo J, Cooper MJ, Naash MI (2012) Comparative Analysis of DNA Nanoparticles and AAVs for Ocular Gene Delivery. PLoS One 7(12):e52189

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the NIH, the Foundation Fighting Blindness and the Oklahoma Center for the Advancement of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muna I. Naash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Han, Z., Conley, S., Naash, M. (2014). Gene Therapy for Stargardt Disease Associated with ABCA4 Gene. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_90

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_90

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics