Skip to main content
Log in

Proliferative vitreoretinopathy — is it anything more than wound healing at the wrong place?

  • Review Article
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Proliferative vitreoretinopathy (PVR) is a reactive process of the ocular tissue after perforating trauma, retinal detachment, and surgical manipulations. Although several studies, most of them experimental, have focused on the detection of specific etiologic factors in the development of PVR, there is compelling evidence that PVR is nothing more than a physiologic tissue repair process with undesirable consequences for the retina. Important features of PVR involving the role of platelets, mononuclear phagocytes, and fibroblasts parallel the chain of events observed in tissue repair elsewhere in the body. Numerous experimental models for PVR, originally designed to find specific stimuli for the generation of intraocular traction membrane formation, have shown that the process of PVR is the common pathway of the eye's reaction to vitreoretinal trauma of any kind. Accordingly, vitreoretinal surgeons could learn a lot from the work of other disciplines, e.g. surgery and dermatology, on wound healing, and the factors known to modify wound healing elsewhere in the body should be taken into consideration. The well-established impairment of tissue repair processes caused by medical treatment with corticosteroids and cytotoxic agents suggests a combined medical approach to PVR as an adjunct to surgical treatment, using refined methods of application and dosage. Steroids and cytotoxic drugs will influence the course of PVR by suppressing macrophage recruitment and the initial inflammatory reaction as well as the proliferative phase of wound healing with traction retinal detachment, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama SK, Yamada KM. Fibronectin. Adv Enzymol 1987; 59: 1–57.

    Google Scholar 

  2. Albini A, Adelman-Grill BC, Müller PK. Fibroblast chemotaxis. Collagen Rel Res 1985; 5: 283–296.

    Google Scholar 

  3. Algvere P, Kock E. Experimental fibroplasia in the rabbit vitreous. Retinal detachment induced by autologous fibroblasts. Graefe's Arch Clin Exp Ophthalmol 1976; 199: 215–222.

    Google Scholar 

  4. Algvere P, Kock E. Experimental epiretinal membranes induced by intravitreal carbon particles. Am J Ophthalmol 1983; 96: 345–353.

    Google Scholar 

  5. Algvere P, Landau IM. Implantation of fibroblasts in vitrectomized eyes. Dose-response relationship and the putative inhibitory effect of sodium hyaluronate. Ophthalmic Res 1987; 19: 271–276.

    Google Scholar 

  6. Algvere P, Martini B. Experimental intravitreal proliferation and neovascularisation in the cynomolgus monkey. Graefe's Arch Clin Exp Ophthalmol 1986; 224: 69–75.

    Google Scholar 

  7. Algvere P, Wallow IH, Martini B. The development of vitreous membranes and retinal detachment induced by intravitreal carbon microparticles. Graefe's Arch Clin Exp Ophthalmol 1988; 226: 471–478.

    Google Scholar 

  8. Assoian RK, Sporn MB. Type b transforming growth factor in human platelets: Release during platelet degranulation and action on vascular smooth muscle cells. J Cell Biol 1986; 102: 1217–1223.

    Google Scholar 

  9. Avery RL, Glaser BM. Inhibition of retinal pigment epithelial cell attachment by a synthetic peptide derived from the cell-binding domain of fibronectin. Arch Ophthalmol 1986; 104: 1220–1222.

    Google Scholar 

  10. Behrens-Baumann W, Vogel M. Experimental study on drug therapy of ‘traction retinal detachment’ after posterior penetrating eye injury in the rabbit. Graefe's Arch Clin Exp Ophthalmol 1986; 224: 513–519.

    Google Scholar 

  11. Binder S, Riss B, Skorpik C, Kulnig W. Inhibition of experimental intraocular proliferation with intravitreal 5-fluorouracil. Graefe's Arch Clin Exp Ophthalmol 1983; 221: 126–129.

    Google Scholar 

  12. Binder S, Velikay M, Stolba U, Kulnig W. High energy electrons used to inhibit intraocular proliferation. In: Heimann, K, Wiedemann P (eds.) Proliferative vitreoretinopathy, pp. 265–267. Kaden Verlag, Heidelberg 1989.

    Google Scholar 

  13. Blumenkranz MS, Ophir A, Claflin AJ, Hajek A. Fluorouracil for the treatment of massive periretinal proliferation. Am J Ophthalmol 1982; 94: 458–467.

    Google Scholar 

  14. Bradbury M. The concept of a blood-brain barrier. John Wiley & Sons. Chichester 1979.

    Google Scholar 

  15. Bryan JA III, Campochiaro PA. A retinal pigment epithelial cell-derived growth factor(s). Arch Ophthalmol 1986; 104: 422–425.

    Google Scholar 

  16. Burke JM. Cell interactions in PVR. International Symposium on PVR, Cologne 1988.

  17. Burke JM, Foster SJ. Induction of DNA synthesis by co-culture of retinal glia and pigment epithelium. Invest Ophthalmol Vis Sci 1985; 26: 636–642.

    Google Scholar 

  18. Burke JM, Twinning SS. Vitreous macrophage elicitation: generation of stimulants for pigment epithelium in vitro. Invest Ophthalmol Vis Sci 1987; 28: 1100–1107.

    Google Scholar 

  19. Campochiaro PA, Gen HA, Robertson TJ, Conway BP. The role of breakdown of the blood-retinal barrier (BRB) in cell injection models of proliferative vitreoretinopathy. International Symposium on PVR, Cologne 1988.

  20. Campochiaro PA, Glaser BM. Platelet-derived growth factor is chemotactic for human retinal pigment epithelial cells. Arch Ophthalmol 1985; 103: 576–579.

    Google Scholar 

  21. Campochiaro PA, Jerdan JA, Glaser BM. Serum contains chemoattractants for human retinal pigment epithelial cells. Arch Ophthalmol 1984; 102: 1830–1833.

    Google Scholar 

  22. Campochiaro PA, Jerdan JA, Glaser BM, Cardin A, Michels RG. Vitreous aspirates from patients with proliferative vitreoretinopathy stimulate retinal pigment epithelial cell migration. Arch Ophthalmol 1985; 103: 1403–1405.

    Google Scholar 

  23. Chandler DB, Hida T, Sheta S, Proia AD, Machemer R. Improvement in efficacy of corticosteroid therapy in an animal model of proliferative vitreoretinopathy by pretreatment. Graefe's Arch Clin Exp Opthalmol 1987; 225: 259–265.

    Google Scholar 

  24. Chandler DB, Rozakis G, de Juan E, Machemer R. The effect of triamcinolone acetonide of a refined experimental model of proliferative vitreoretinopathy. Am J Ophthalmol 1985; 99: 686–690.

    Google Scholar 

  25. Clark JG, Greenberg J. Modulation of the effects of alveolar macrophages on lung fibroblast collagen production rate. Am Rev Respir Dis 1987; 135: 52–56.

    Google Scholar 

  26. Cleary PE, Ryan SJ. Method of production and natural history of experimental posterior penetrating eye injury in the rhesus monkey. Am J Ophthalmol 1979; 88: 212–220.

    Google Scholar 

  27. Cleary PE, Ryan SJ. Histology of wound, vitreous, and retina in experimental posterior penetrating eye injury in the rhesus monkey. Am J Ophthalmol 1979; 88: 221–231.

    Google Scholar 

  28. Cleary PE, Ryan SJ. Vitrectomy in penetrating eye injury. Results of a controlled trial of vitrectomy in an experimental posterior penetrating eye injury in the rhesus monkey. Arch Ophthalmol 1981; 99: 287–292.

    Google Scholar 

  29. Constable IJ, Oguri M, Chesney CM, Swann DA, Colman RA. Platelet-induced vitreous membrane formation. Invest Ophthalmol 1975; 12: 680–685.

    Google Scholar 

  30. Durant S, Duval D, Homo-Delarche F. Factors involved in the control of fibroblast proliferation by glucocorticosteroids: a review. Endocr Rev 1986; 7: 254–269.

    Google Scholar 

  31. Fastenberg DM, Diddie KR, Delmage JM, Dorey K. Intraocular injection of silicone oil for experimental proliferative vitreoretinopathy. Am J Ophthalmol 1983; 95: 663–667.

    Google Scholar 

  32. Fastenberg DM, Diddie KR, Dorey K, Ryan SJ. The role of cellular proliferation in an experimental model of massive periretinal proliferation. Am J Ophthalmol 1982; 93: 565–572.

    Google Scholar 

  33. Fastenberg DM, Diddie KR, Sorgente N, Ryan SJ. A comparison of different cellular inocula in an experimental model of massive periretinal proliferation. Am J Ophthalmol 1982; 93: 559–564.

    Google Scholar 

  34. Gaudric A, Glacet A, Falquerho L, Barritault D, Coscas G. Transforming growth factor beta in vitreous from patients with epiretinal proliferation. In: Heimann, K, Wiedemann P (eds.) Proliferative vitreoretinopathy, pp. 118–119. Kaden Verlag, Heidelberg 1989.

    Google Scholar 

  35. Glaser BM, Connor jr TB, Roberts AB, Sporn MB, Danielpour D, Dart LL, Michels RG, de Bustros S, Enger C. Correlation of fibrosis and transforming growth factor beta type II levels in the eye. In: Heimann, K, Wiedemann P (eds.) Proliferative vitreoretinopathy, pp. 120–127. Kaden Verlag, Heidelberg 1989.

    Google Scholar 

  36. Gonvers M, Thresher R. Tempory use of silicone oil in the treatment of proliferative vitreoretinopathy. An experimental study with a new animal model. Graefe's Arch Clin Exp Ophthalmol 1983; 221: 46–53.

    Google Scholar 

  37. Gray WA. Cellular response of vitreous humour to injections of bacteria, blood and vital dyes. J Pathol Bacteriol 1933; 37: 137–148.

    Google Scholar 

  38. Grierson I, Boulton M, Hiscott P, Hitchins C, Gilbert D, McLeod D. Human retinal pigment epithelial cells in the vitreous of the owl monkey. Exp Eye Res 1986; 43: 491–502.

    Google Scholar 

  39. Grierson I, Rahi AHS. Structural basis of contraction in vitreal fibrous membranes. Br J Ophthalmol 1981; 65: 737–749.

    Google Scholar 

  40. Haller Yeo J, Sadeghi J, Campochiaro PA, Green R, Glaser BM. Intravitreous fibronectin and platelet-derived growth factor. New model for traction retinal detachment. Arch Ophthalmol 1986; 104: 417–421.

    Google Scholar 

  41. Harvey AK, Roberge F, Hjelmeland LM. Chemotaxis of rat retinal glia to growth factors found in repairing wounds. Invest Ophthalmol Vis Sci 1987; 28: 1092–1099.

    Google Scholar 

  42. Hatchell DL. Reactive proliferation of the host tissue in experimental proliferative vitreoretinopathy. International Symposium on PVR, Cologne 1988.

  43. Heimann K. Chirurgie des Glaskörpers. In: François J, Hollwich F (eds) Augenheilkunde in Klinik und Praxis. Vol 3, II. Thieme, Stuttgart 1986.

    Google Scholar 

  44. Helin H. Macrophage procoagulant factors — mediators of inflammatory and neoplastic tissue lesions. Med Biol 1986; 64: 167–176.

    Google Scholar 

  45. Hida T, Chandler DB, Sheta SM. Classification of the stages of proliferative vitreoretinopathy in a refined experimental model in a rabbit eye. Graefe's Arch Clin Exp Ophthalmol 1987; 225: 303–307.

    Google Scholar 

  46. Hilton G, Machemer R, Michels R, Okun E, Schepens C, Schwartz A. The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology 1983; 90: 121–125.

    Google Scholar 

  47. Hiscott PS, Grierson I, McLeod D. Natural history of fibrocellular epiretinal membranes: a quantitative autoradiographic, and immunohistochemical study. Br J Ophthalmol 1985; 69: 810–823.

    Google Scholar 

  48. Hitchins CA, Grierson I. Experimental scar membranes in the rabbit's vitreous. An autoradiographic and quantitative morphological study. Acta Ophthalmol 1985; 63: 557–566.

    Google Scholar 

  49. Hitchins CA, Grierson I, Hiscott PS. The effects of injections of cultured fibroblasts into the rabbit vitreous. Graefe's Arch Clin Exp Ophthalmol 1985; 223: 237–249.

    Google Scholar 

  50. Hsu HT, Dorey K, Sorgente N, Ryan SJ. Surgical removal of the vitreous. Its effect on intraocular fibroblast proliferation in the rabbit. Arch Ophthalmol 1984; 102: 605–607.

    Google Scholar 

  51. Hui YN, Goodnight R, Zhang X, Sorgente N, Ryan SJ. Glial epiretinal membranes and contraction. Immunohistochemical and morphological studies. Arch Ophthalmol 1988; 106: 1280–1285.

    Google Scholar 

  52. Hui YN, Sorgente N, Ryan SJ. Posterior vitreous separation and retinal detachment induced by macrophages. Graefe's Arch Clin Exp Ophthalmol 1987; 225: 279–284.

    Google Scholar 

  53. Hynes RO. Integrins: a family of cell surface receptors. Cell 1987; 48: 549–554.

    Google Scholar 

  54. Ignotz RA, Massagué J. Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 1986; 261: 4337–4345.

    Google Scholar 

  55. Irvin TT. The healing wound. In: Bucknall TE, Ellis H (eds) Wound healing for surgeons. Bailliére Tindall, London 1984.

    Google Scholar 

  56. Jester JV, Rodrigues MM, Herman IM. Characterization of avascular corneal wound healing fibroblasts. New insights into the myofibroblast. Am J Pathol 1987; 127: 140–148.

    Google Scholar 

  57. Johnson RN, Blankenship G. A prospective, randomized, clinical trial of heparin therapy for postoperative intraocular fibrin. Ophthalmology 1988; 95: 312–317.

    Google Scholar 

  58. Jumping L, Chunzi H, Shuiqing Z, Jianming R, Houren W. Inhibition of intraocular proliferation by homoharringtonine. Graefe's Arch Clin Exp Ophthalmol 1988; 226: 367–370.

    Google Scholar 

  59. Kain HL. A new model for proliferative vitreoretinopathy: a role of lysosomal enzymes. In: Heimann, K, Wiedemann P (eds.) Proliferative vitreoretinopathy, pp. 38–44. Kaden Verlag, Heidelberg 1989.

    Google Scholar 

  60. Kampik A, Kenyon KR, Michels RG, Green WR, de la Cruz ZC. Epiretinal and vitreous membranes. Arch Ophthalmol 1981; 99: 1445–1454.

    Google Scholar 

  61. Kirchhof B, Kirchhof E, Ryan SJ, Dixon JFP, Barton BE, Sorgente N. Macrophage modulation of retinal pigment epithelial cell migration and proliferation. Graefe's Arch Clin Exp Ophthalmol 1989; 227: 60–66.

    Google Scholar 

  62. Kirmani M, Santana M, Sorgente N, Wiedemann P, Ryan SJ. Anti-proliferative drugs in the treatment of experimental proliferative vitreoretinopathy. Control by daunomycin. Retina 1983; 3: 269–272.

    Google Scholar 

  63. Koerner F, Merz A, Gloor B, Wagner E. Postoperative retinal fibrosis - a controlled clinical study of systemic steroid therapy. Graefe's Arch Clin Exp Ophthalmol 1982; 219: 268–271.

    Google Scholar 

  64. Lam KW, Ashrafzadeh MT, Lee CB. Vitreous membranes. Induction in rabbits by intravitreous leukocyte injections. Arch Ophthalmol 1972; 88: 656–658.

    Google Scholar 

  65. Lean JS. Origin of simple glial epiretinal membranes in an animal model. Graefe's Arch Clin Exp Ophthalmol 1987; 225: 421–425.

    Google Scholar 

  66. Lean JS, Van der Zee WAM, Ryan SJ. Experimental model of proliferative vitreoretinopathy (PVR) in the vitrectomized eye: effect of silicone oil. Br J Ophthalmol 1984; 68: 332–335.

    Google Scholar 

  67. Leibovich SJ, Ross R. The role of the macrophage in wound repair. A study with hydrocortisone and anti-macrophage serum. Am J Pathol 1975; 78: 71–100.

    Google Scholar 

  68. Leibovich SJ, Wiseman DM. Macrophages, wound repair and angiogenesis. Prog Clin Biol Res 1988; 266: 131–145.

    Google Scholar 

  69. Lemor M, de Bustros S, Glaser BM. Low-dose colchicine inhibits astrocyte, fibroblast, and retinal pigment epithelial cell migration and proliferation. Arch Ophthalmol 1986; 104: 1223–1225.

    Google Scholar 

  70. Lemor M, Haller Yeo J, Glaser BM. Oral colchicine for the treatment of experimental traction retinal detachment. Arch Ophthalmol 1986; 104: 1226–1229.

    Google Scholar 

  71. Ligget PR, Deuel T, Freeman WR, Rao N, Ryan SJ. Platelet-derived groewth factor in choroidal melanoma. Invest Ophthalmol Vis Sci 1986; 27: Suppl 132.

  72. Machemer R. Proliferative vitreoretinopathy (PVR): a personal account of its pathogenesis and treatment. Proctor lecture. Invest Ophthalmol Vis Sci 1988; 29: 1771–1783.

    Google Scholar 

  73. Mandelcorn MS, Machemer R, Fineberg E, Hersch SB. Proliferation and metaplasia of intravitreal retinal pigment epithelium autotransplants. Am J Ophthalmol 1975; 80: 227–237.

    Google Scholar 

  74. Miglior S, Kain HL, Libondi T, Gonzàlez RG, Barnett P, Krauss JM, Cheng HM. Early vitreous changes in experimental proliferative vitreoretinopathy. Arch Ophthalmol 1986; 104: 1681–1684.

    Google Scholar 

  75. Miller B, Miller H, Patterson R, Ryan SJ. Retinal wound healing. Cellular activity at the vitreoretinal interface. Arch Ophthalmol 1986; 104: 281–285.

    Google Scholar 

  76. Miller B, Miller H, Patterson R, Ryan SJ. Effect of the vitreous on retinal wound healing. Graefe's Arch Clin Exp Ophthalmol 1986; 224: 576–579.

    Google Scholar 

  77. Miller B, Miller H, Ryan SJ. Experimental epiretinal proliferation induced by intravitreal red blood cells. Am J Ophthalmol 1986; 102: 188–195.

    Google Scholar 

  78. Moorhead LAC. Vitreous. In: Anderson RE (ed): Biochemistry of the eye. American Academy of Ophthalmology, San Francisco 1983.

    Google Scholar 

  79. Moorhead LC. Effects of β-aminopropionitrile after posterior or penetrating injury in the rabbit. Am J Ophthalmol 1983; 95: 97–109.

    Google Scholar 

  80. Müller-Jensen K, Machemer R, Azarnia R. Autotransplantation of retinal pigment epithelium in intravitreal diffusion chamber. Am J Ophthalmol 1975; 80: 530–537.

    Google Scholar 

  81. Mustoe T, Pierce GF, Thomason A, Gramates P, Sporn MB, Deuel TF. Accelerated healing of incisional wounds in rats induced by transforming growth factor-β. Science 1987; 237: 1333–1336.

    Google Scholar 

  82. Nathan CF. Secretory products of macrophages. J Clin Invest 1987; 79: 319–326.

    Google Scholar 

  83. Naumann GOH, Gloor BP (eds). Wound healing of the eye and its complications. Bergmann, München 1980.

    Google Scholar 

  84. Oikarinen AI, Uitto J, Oikarinen J. Glucocorticoid action on connective tissue: from molecular mechanisms to clinical practice. Med Biol 1986; 64: 221–230.

    Google Scholar 

  85. Ophir A, Blumenkranz MS, Claflin A. Experimental intraocular proliferation and neovascularisation. Am J Ophthalmol 1982; 94: 450–457.

    Google Scholar 

  86. Peczon BD, Wolfe JK, Gipson IK, Hirose T, Buzney SM, Schepens CL. Characterization of membranes removed during open-sky vitrectomy. Invest Ophtalmol Vis Sci 1983; 24: 1382–1389.

    Google Scholar 

  87. Perry VH, Gordon S. Macrophages and microglia in the nervous system. TINS 1988; 11: 273–277.

    Google Scholar 

  88. Pessa ME, Bland KI, Copelend EM. Growth factors and determinants of wound repair. J Surg Res 1987; 42: 207–217.

    Google Scholar 

  89. Peters MA, Burke JM, Clowry M, Abrams GW, Williams GA. Development of traction retinal detachments following intravitreal injections of retinal Müller and pigment epithelial cells. Graefe's Arch Clin Exp Ophthalmol 1986; 224: 554–563.

    Google Scholar 

  90. Pollack A, Korte GE, Heriot WJ, Henkind P. Ultrastructure of Bruch's membrane after krypton laser photocoagulation. II. Repair of Bruch's membrane and the role of macrophages. Arch Ophthalmol 1986; 104: 1377–1382.

    Google Scholar 

  91. Radtke ND, Tano Y, Chandler D, Machemer R. Simulation of massive periretinal proliferation by autotransplantation of retinal pigment epithelial cells in rabbits. Am J Ophthalmol 1981; 91: 76–87.

    Google Scholar 

  92. Radtke ND, Weinsieder AD, Ballou RJ. Pharmacological therapy for proliferative vitreoretinopathy. Graefe's Arch Clin Exp Ophthalmol 1986; 224: 230–233.

    Google Scholar 

  93. Rennard SI, Bitterman PB, Ozaki T, Rom WN, Crystal RG. Colchicine suppresses the release of fibroblast growth factors from alveolar macrophages in vitro. The basis of a possible therapeutic approach to the fibrotic disorders. Am Rev Respir Dis 1988; 137: 181–185.

    Google Scholar 

  94. Ross R, Glomset J, Kariya B, Harker LA. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA 1974; 71: 1207–1210.

    Google Scholar 

  95. Ross R, Vogel A. The platelet-derived growth factor. Cell 1978; 14: 203–210.

    Google Scholar 

  96. Rowen SL, Glaser BM. Retinal pigment epithelial cells release a chemoattractant for astrocytes. Arch Ophthalmol 1985; 103: 704–707.

    Google Scholar 

  97. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987; 238: 491–497.

    Google Scholar 

  98. Rutherford R, Ross R. Platelet factors stimulate fibroblasts and smooth muscle cells quiescent in plasma serum to proliferate. J Cell Biol 1976; 69: 196–203.

    Google Scholar 

  99. Sandberg N. Relationship between administration of cortisone and wound healing in rats. Acta Chir Scand 1964; 127: 446–455.

    Google Scholar 

  100. Scheiffarth OF, Günther H, Kampik A, v.d. Mark K, Timpl R. Strukturproteine bei proliferativer Vitreoretinopathie. Fortschr Ophthalmol 1986; 83: 582–584.

    Google Scholar 

  101. Scheiffarth OF, Kampik A, Günther H, Von der Mark K. Proteins of the extracellular matrix in vitreoretinal membranes. Graefe's Arch Clin Exp Ophthalmol 1988; 226: 357–361.

    Google Scholar 

  102. Seemayer TA, Lagacé R, Schürch W, Thelmo WL. The myofibroblast: biologic, pathologic, and theoretical considerations. Pathol Annu 1980; 15: 443–470.

    Google Scholar 

  103. Seppä H, Grotendorst G, Seppä S, Schiffmann E, Martin GR. Platelet-derived growth factor is chemotactic for fibroblasts. J Cell Biol 1982; 92: 584–588.

    Google Scholar 

  104. Shabo AL, Maxwell DS. Experimental immunogenic proliferative retinopathy in monkeys. Am J Ophthalmol 1977; 83: 471–480.

    Google Scholar 

  105. Sporn MB, Roberts AB, Wakefield LM, Assoian RK. Transforming growth factor-β: biological function and chemical structure. Science 1986; 233: 532–534.

    Google Scholar 

  106. Stern WH, Fisher SK, Anderson DH, O'Donnell JJ, Erickson PA, Lewis GP, Guerin CJ, Borgula GA, McDermott MA. Epiretinal membrane formation after vitrectomy. Am J Ophthalmol 1982; 93: 757–772.

    Google Scholar 

  107. Sugita G, Tano Y, Machemer R, Abrams G, Claflin A, Fiorentino G. Intravitreal autotransplantation of fibroblasts. Am J Ophthalmol 1980; 89: 121–130.

    Google Scholar 

  108. Sunalp M, Wiedemann P, Sorgente N, Ryan SJ. Effect of cytotoxic drugs on proliferative vitreoretinopathy in the rabbit cell injection model. Curr Eye Res 1984; 3: 619–623.

    Google Scholar 

  109. Sunalp MA, Wiedemann P, Sorgente N, Ryan SJ. Effect of adriamycin on experimental proliferative vitreoretinopathy in the rabbit. Exp Eye Res 1985; 41: 105–115.

    Google Scholar 

  110. Tano Y, Chandler D, Machemer R. Treatment of intraocular proliferation with intravitreal injection of triamcinolone acetonide. Am J Ophthalmol 1980; 90: 810–816.

    Google Scholar 

  111. Tano Y, Chandler D, McCuen BW, Machemer R. Glucocorticosteroid inhibition of intraocular proliferation after injury. Am J Ophthalmol 1981; 91: 184–189.

    Google Scholar 

  112. Tano Y, Sugita G, Abrams G, Machemer R. Inhibition of intraocular proliferations with intravitreal corticosteroids. Am J Ophthalmol 1980; 89: 131–136.

    Google Scholar 

  113. Topping TM, Abrams GW, Machemer R. Experimental double-perforating injury of the posterior segment in rabbit eyes: the natural history of intraocular proliferation. Arch Ophthalmol 1979; 97: 735–742.

    Google Scholar 

  114. Trese MT, Spitznas M, Foos RY, Hall MO. Experimental tractional retinal detachment in rabbits. Clinical picture and histopathologic features. Albrecht v. Graefe's Arch Clin Exp Ophthalmol 1980; 214: 213–222.

    Google Scholar 

  115. Van der Zee WAM, Lean JS, Ryan SJ. Unexpected traction retinal detachment: a complication of an animal model of pars plana vitrectomy. Graefe's Arch Clin Exp Ophthalmol 1984; 221: 182–185.

    Google Scholar 

  116. Varga J, Rosenbloom J, Jiminez SA. Transforming growth factor β (TGFβ) causes a persistent increase in steady-state amounts of type I and type III collagen and fibronectin mRNAs in normal human dermal fibroblasts. Biochem J 1987; 247: 597–604.

    Google Scholar 

  117. Weller M, Heimann K, Wiedemann P. Demonstration of mononuclear phagocytes in a human epiretinal membrane using a monoclonal anti-human macrophage antibody. Graefe's Arch Clin Exp Ophthalmol 1988; 226: 252–254.

    Google Scholar 

  118. Weller M, Heimann K, Wiedemann P. L'importance des macrophages et de la fibronectine pour la prolifération vitréo-rétinienne. J Fr Ophthalmol 1988; 11: 243–247.

    Google Scholar 

  119. Weller M, Heimann K, Wiedemann P. Immunochemical studies of epiretinal membranes using APAAP complexes - Evidence for macrophage involvement in traumatic proliferative vitreoretinopathy. Int Ophthalmol 1988; 11: 181–186.

    Google Scholar 

  120. Weller M, Heimann K, Wiedemann P. Immunochemical analysis of periretinal membranes. Review and outlook. In: Straub W (ed): Developments in Ophthalmology, Vol. 16. Karger, Basel 1989; pp. 54–74.

    Google Scholar 

  121. Weller M, Heimann K, Wiedemann P. Mononukleäre Phagozyten und ihre Wachstumsfaktoren: Schrittmacher der proliferativen Vitreoretinopathie? Klin Monatsbl Augenheilkd 1989; in press.

  122. Weller M, Wiedemann P, Bresgen M, Heimann K. Collocalisation of the serum spreading factor, vitronectin, and fibronectin in traction membranes from patients with proliferative vitreoretinopathy. 87. Tagung der Deutschen Ophthalmologischen Gesellschaft. 1989; submitted.

  123. Weller M, Wiedemann P, Heimann K. Cytotoxic effects of daunomycin on retinal pigment epithelium in vitro. Graefe's Arch Clin Exp Ophthalmol 1987; 225: 235–238.

    Google Scholar 

  124. Weller M, Wiedemann P, Heimann K, Zilles K. The significance of fibronectin in vitreoretinal pathology: a critical evaluation. Graefe's Arch Clin Exp Ophthalmol 1988; 226: 294–298.

    Google Scholar 

  125. Weller M, Wiedemann P, Moter H, Heimann K. Transferrin and transferrin receptor expression in proliferative intraocular disease. APAAP labeling and Elisa for vitreal transferrin. Graefe's Arch Clin Exp Ophthalmol 1989; 227: 281–286.

    Google Scholar 

  126. Wiedemann P. Die medikamentöse Behandlung der proliferativen Vitreoretinopathie. Enke, Stuttgart 1988.

    Google Scholar 

  127. Wiedemann P. Introduction to medical treatment of proliferative vitreoretinopathy (PVR): the selection of drugs for clinical trials. In: Heimann, K, Wiedemann P (eds.) Proliferative vitreoretinopathy, pp. 248–250. Kaden Verlag, Heidelberg 1989.

    Google Scholar 

  128. Wiedemann P. Die medkamentöse Therapie der proliferativen Vitreoretinopathie. Fortschr Ophthalmol 1989; 86: 115–120.

    Google Scholar 

  129. Wiedemann P, Kirmani M, Santana M, Sorgente N, Ryan SJ. Control of experimental massive periretinal proliferation by daunomycin: dose-response relation. Graefe's Arch Clin Exp Ophthalmol 1983; 220: 233–235.

    Google Scholar 

  130. Wiedemann P, Lemmen K, Schmiedl R, Heimann K. Intraocular daunorubicin for the treatment and prophylaxis of traumatic proliferative vitreoretinopathy. Am J Ophthalmol 1987; 104: 10–14.

    Google Scholar 

  131. Wiedemann P, Ryan SJ, Novak P, Sorgente N. Vitreous stimulates proliferation of fibroblasts and retinal pigment epithelial cells. Exp Eye Res 1985; 41: 619–628.

    Google Scholar 

  132. Wiedemann P, Sorgente N, Bekhor C, Patterson R, Tran T, Ryan SJ. Daunomycin in the treatment of experimental vitreoretinopathy. Effective doses in vitro and in vivo. Invest Ophthalmol Vis Sci 1985; 26: 719–725.

    Google Scholar 

  133. Wiedemann P, Sorgente N, Ryan SJ. Proliferative vitreoretinopathy: the rabbit cell injection model for screening of antiproliferative drugs. J Pharmacol Methods 1984; 12: 69–78.

    Google Scholar 

  134. Wiedemann P, Weller M. The pathophysiology of proliferative vitreoretinopathy. Acta Ophthalmol 1988; 66: Suppl 189.

  135. Zetter BR, Antoniades HN. Stimulation of human vascular endothelial cell growth by platelet-derived growth factor. J Supramol Struct 1979; 11: 361–370.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weller, M., Wiedemann, P. & Heimann, K. Proliferative vitreoretinopathy — is it anything more than wound healing at the wrong place?. Int Ophthalmol 14, 105–117 (1990). https://doi.org/10.1007/BF00154210

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00154210

Keywords

Navigation