Skip to main content
Log in

Factors influencing the ocular pulse — the heart rate

  • Clinical Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Using pneumotonometry combined with a Langham ocular blood-flow system, measurements of pulsatile ocular blood flow (POBF) were performed in eight ocular normotensive patients with implanted cardiac pacemakers, with the subjects assuming both the erect and the supine postures. Sequential measurements of POBF were made at pre-set values of heart rate over the physiological range between 60 and 120 beats/min at intervals of 10 beats/min. With patients in the supine position, measurements of cardiac output and stroke volume indices were also recorded by impedance cardiography. The mean pulse amplitude of the intraocular pressure (the ocular pulse) decreased as heart rate increased, and this change was statistically significant in both postures according to repeated-measures analysis of variance (erect: f=18.7, P < 0.0001; supine: f=18.8, P<0.0001). As measured in supine patients following an increase in heart rate, the pulse amplitude decreased in parallel with a decline in stroke volume index (f=18.8, P<0.0001). Up to a level of 90 beats/min, the mean POBF increased with heart rate, but it declined above this rate in both erect and supine postures. At all heart rates, intraocular pressure was higher when subjects were supine than when they stood erect (f=4.3, P<0.001). At lower heart rates of 70 and 80 beats/min, ocular pulse volume and POBF were significantly lower in supine patients than in erect subjects (70 beats/min: t=3.89, P<0.01 vs; t=3.87, P<0.01; 80 beats/min: t=2.85, P< 0.05 vs ; t = 2.87, P< 0.05). We conclude that when the heart rate is under normal physiological drive, the decline in POBF that accompanies the act of lying down is determined both by the change in posture itself and by the fall in heart rate that is associated with it. These observations suggest a possible disadvantage inherent in the use of anti-glaucoma drugs that inter alia induce bradycardia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berne RM, Levy MN (eds) (1988) Physiology, 2nd edn. Mosby, St. Louis, pp 472–485

    Google Scholar 

  2. Bernstein DP (1986) Continuous noninvasive real-time monitoring of stroke volume and cardiac output by thoracic electrical bioimpedance. Crit Care Med 14:898–901

    Google Scholar 

  3. Bernstein DP (1986) A new stroke volume equation or thoracic electrical bioimpedance: theory and rationale. Crit Care Med 14:904–909

    Google Scholar 

  4. Bray JJ, Cragg PA, Macknight ADC, Mills RG, Taylor DW (eds) (1989) Lecture notes in human physiology, 2nd edn. Blackwell, Oxford, pp 456–460

    Google Scholar 

  5. Canning CR, Restori M (1988) Doppler ultrasound studies of the ophthalmic artery. Eye 2:92–95

    Google Scholar 

  6. Riva CE, Grunwald JE, Petrig BL, Sinclair SH (1985) Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 26:1124–1132

    Google Scholar 

  7. Rosenqvist M, Botvinick EH, Abbott JA, O'Connell W, Cockrell J, Griffin JC (1989) The importance of abnormal pattern of ventricular depolarization, a comparison between atrial, AV-sequential and ventricular pacing. Pace 12:509–515

    Google Scholar 

  8. Roy MS, Harrison KS, Harvey E, Mitchell T (1989) Ocular blood flow in dogs using radiolabelled microspheres. Int J Radiat Appl Instrum [B] 16:81–84

    Google Scholar 

  9. Shepherd JT, Vanhoutte PM (1979) The human cardiovascular system. Facts and concepts. Raven Press, New York, pp 158–161

    Google Scholar 

  10. Sowton E, Siddon A (1976) Cardiac pacemakers. Thomas, Springfield

    Google Scholar 

  11. Trew DR, Smith SE (1991) Postural studies in pulsatile ocular blood flow: 1. Ocular hypertension and normotension. Br J Ophthalmol 75:66–70

    CAS  PubMed  Google Scholar 

  12. Trew DR, Smith SE (1991) Postural studies in pulsatile ocular blood flow: 2. Chronic open angle glaucoma. Br J Ophthalmol 75:71–75

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: D.R. Trew

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trew, D.R., James, C.B., Thomas, S.H.L. et al. Factors influencing the ocular pulse — the heart rate. Graefe's Arch Clin Exp Ophthalmol 229, 553–556 (1991). https://doi.org/10.1007/BF00203321

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203321

Keywords

Navigation