Skip to main content
Log in

New approaches to ophthalmic electrodiagnosis by retinal oscillatory potential, drug-induced responses from retinal pigment epithelium and cone potential

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

New clinical methods are proposed to assess (1) neuronal activities of the retinal inner layers including amacrine cells by means of the oscillatory potential, (2) photopic function through the rapid decay in the off-response and (3) activities of the retinal pigment epithelium through susceptibility of the standing potential of the eye to osmotic stress and to Diamox. These new methods are able to reveal otherwise undetectable retinal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Algvere, P. & Gjötterberg, M. Diagnostic value of the oscillatory potential and fluorescein angiography in diabetic retinopathy. Ophthalmologica 168: 97–108 (1974).

    Google Scholar 

  • Arden, G.B. The retina. Neurophysiology, The Eye. 2A, edited by H. Davson, 229–356, Academic Press, New York (1976).

    Google Scholar 

  • Arden, G.B. & Ikeda, H. Electrophysiological findings in congenital retinal degeneration. Proc. 4th Symposium of International Society for Clinical Electroretinography. Japn. J. Ophthal. 10 Suppl. 222–230 (1966).

  • Armington, J.C. A component of the human electroretinogram associated with red color vision. J. Opt. Soc. Am. 42: 393–401 (1952).

    Google Scholar 

  • Armington, J.C. Electrical responses of the light-adapted eye. J. Opt. Soc. Am. 43: 450–456 (1953).

    Google Scholar 

  • Armington, J.C. The Electroretinogram. Academic Press, New York (1974).

    Google Scholar 

  • Armington, J.C. & Biersdorf, W.R. Flicker and color adaptation in the human electroretinogram. J. Opt. Soc. Am. 46: 393–400 (1956).

    Google Scholar 

  • Babel, J., Stangos, N. Korol S. & Spiritus M. Ocular Electrophysiology. A Clinical and Experimental Study of Electroretinogram, Electro-oculogram, Visual Evoked Response. Georg Thieme; Stuttgart (1977).

    Google Scholar 

  • Ballantyne, A.J. & Michaelson, I.C. Textbook of the Fundus of the Eye. Livingstone, Edingburgh (1970).

    Google Scholar 

  • Baylor, D.A. & Hodgkin, A.L. Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. 234: 163–198 (1973).

    Google Scholar 

  • Berson, E.L. & Goldstein, E.B. Early receptor potential in dominantly inherited retinitis pigmentosa. Arch. Ophthal. 83: 412–420 (1970).

    Google Scholar 

  • Biersdorf, W.R. Rod and cone contributions to the off-effect of the human ERG. Invest. Ophthal. 7: 371–377 (1968).

    Google Scholar 

  • Boynton, R.M. & Whitten, D.N. Selective chromatic adaptation in primate photoreceptors. Vision Res. 12: 855–874 (1972).

    Google Scholar 

  • Brown, K.T. The electroretinogram. Its components and their origins. Vision Res. 8: 633–677 (1968).

    Google Scholar 

  • Brown, K.T. & Murakami, M. A new receptor potential of the monkey retina with no detectable latency. Nature 201: 626–628 (1964).

    Google Scholar 

  • Brown, K.T. & Watanabe, K. Isolation and identification of a receptor potential from the pure cone fovea of the monkey retina. Nature 193: 958–960 (1962).

    Google Scholar 

  • Brown, K.T., Watanabe, K. & Murakami, M. The early and late receptor potentials of monkey cones and rods. Cold Spring Harbor Symposium. Quant. Biol. 30: 457–482 (1965).

    Google Scholar 

  • Brunette, J.R. & Desrochers, R. Oscillatory potentials, a clinical study in diabetes. Can. J. Ophthal. 5: 373–380 (1970).

    Google Scholar 

  • Bruum, A. & Ehinger, B. Uptakes of the putative neurotransmitter, glycine, into the rabbit retina. Invest. Ophthal. 11: 191–198 (1972).

    Google Scholar 

  • Burian, H.M. Electric responses of the human visual system. Arch. Ophthal. 51: 509–524 (1954).

    Google Scholar 

  • Cervetto, L. & MacNichol, E.F. Jr. Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science 178: 767–768 (1972).

    Google Scholar 

  • Chang, R.Y. & Naka, K. The amacrine cell. Vision Res. 16: 1119–1129 (1976).

    Google Scholar 

  • Cone, R.A. Early receptor potential, photoreversible charge displacement in rhodopsin. Science 155: 1128–1131 (1967).

    Google Scholar 

  • Copenhaver, R.M. & Gunkel, R.D. The spectral sensitivity of color-defective subjects determined by electroretinography. Arch. Ophthal. 62: 55–68 (1959).

    Google Scholar 

  • Cunha-Vaz, J., de Abreu, F. Jr. Campos, A.J. & Figo, G.M. Early breakdown of the blood-retinal barrier in diabetes. Br. J. Ophthal. 59: 649–656 (1975).

    Google Scholar 

  • Cunha-Vaz, J., de Abreu, F. Jr. & Teixeira, R. The role of the retinal pigment epithelium in the outer blood-retinal barrier. The 23rd International Congress of Ophthalmology. Kyoto, May 17th (1978).

  • Curtis, D.R., Hösli, L., Johnston, G.A.R. & Johnston, I.H. The hyperpolarization of spinal motorneurons by glycine and related amino-acids. Exp. Brain. Res. 5: 235–258 (1968).

    Google Scholar 

  • Curtis, D.R. & Watkins, J.C. The pharmacology of aminoacids related to gamma amino butyric acid. Pharmacol. Rev. 17: 347–391 (1965).

    Google Scholar 

  • Debecker, J. & Zanen, A. Intensity functions of the early receptor potential and of the melanin fast photovaltage in the human eye. Vision Res. 15: 101–106 (1975).

    Google Scholar 

  • Dick, E. & Miller, R.F. Light-evoked potassium activity in mudpuppy retina: its relation to the b-wave of the electroretinogram. Brain Res. 154: 388–394 (1978).

    Google Scholar 

  • Dodt, E. Cone electroretinography by flicker. Nature 168: 738 (1951).

    Google Scholar 

  • Dodt, E., Copenhaver, R.M. & Gunkel, R.D. Photopischer Dominator und Farbkomponenten in menschlichen Elektroretinogramm. Pflüg. Arch. Ges. Physiol. Mensch. Tiere. 267: 497–507 (1958).

    Google Scholar 

  • Dowling, J.E. The site of visual adaptation. Science 155: 273–279 (1967).

    Google Scholar 

  • Dowling, J.E. Synaptic organization of the frog retina: An electron microscopic analysis comparing the retinas of frogs and primates. Proc. Royal Society London 170: 205–228 (1968).

    Google Scholar 

  • Dowling, J.E. & Boycott, B.B. Organization of the primate retina: Electron microscopy. Proc. Royal Society London 166: 80–111 (1966).

    Google Scholar 

  • Dubin, M.W. The inner plexiform layer of the vertebrate retina: A quantitative and comparative electron microscopic analysis. J. Comp Neurol. 140: 479–506 (1970).

    Google Scholar 

  • Ehinger, B. Cellular location of the uptake of some amino acids into the rabbit retina. Brain Res. 46: 297–311 (1972).

    Google Scholar 

  • Ehinger, B. & Lindberg, B. Light-evoked release of glycine from the retina. Nature 251: 727–728 (1974).

    Google Scholar 

  • Ernest J.T., Stern, W.H. & Trimble, J.L. The effect of mannitol infusion on retinal function and oxygen tension. Invest. Ophthal. 16: 670–673 (1977).

    Google Scholar 

  • Franceschetti, A. & Dieterle, P. Die Differentialdiagnostische Bedeutung des Elektroretinogramms bei tapetoretinalen Degenerationen. Elektroretinographie, Hamburg Symposium. Biblioth. Ophthal. 48: 161–181 (1957).

    Google Scholar 

  • François, J., De Rouck, A., Cambie, E. & Zanen, A. L'electrodiagnostic des affections rétiniennes. Masson, Paris (1974).

    Google Scholar 

  • François, J., Verriest, G. & De Rouck, A. New electroretinographic findings obtained in congenital forms of dyschromatopsia. Br. J. Ophthal. 44: 430–435 (1960).

    Google Scholar 

  • Fujimura, K. Unitary analysis of the compound potential of optic nerve in the rabbit. Acta. Soc. Ophthal. Jpn. 73: 17–39 (1969).

    Google Scholar 

  • Furukawa, T. & Hanawa, I. Effects of some common cations on the electroretinogram of the toad. Jpn. J. Physiol. 5: 289–300 (1955).

    Google Scholar 

  • Galloway, N.R. Early receptor potential in the human eye. Brit. J. Ophthal. 51: 261–264 (1967).

    Google Scholar 

  • Galloway, N.R. Ophthalmic Electrodiagnosis. Vol. 1 Major problems in Ophthalmology, edited by P.D. Trevor-Roper, Saunders, London (1975).

    Google Scholar 

  • Galloway, N.R., Wells, M. & Barber, C. Changes in the oscillatory potential in relation to different features of diabetic retinopathy. Proc. 9th Symposium of International Society for Clinical Electroretinography, 275 (1972).

  • Gjötteberg, M. The electroretinogram in diabetic retinopathy. Acta Ophthal. 52: 531–533 (1974).

    Google Scholar 

  • Goldstein, E.B. & Berson, E.L. Rod and cone contributions to the human early receptor potential. Vision Res. 10: 207–275 (1970).

    Google Scholar 

  • Goodman, G. & Bornschein, H. Comparative electroretinographic studies in congenital night blindness and total color blindness. Arch. Ophthal. 58: 174–182 (1957).

    Google Scholar 

  • Hanawa, I. & Tateishi, I. The effect of aspartate on the electroretinogram of the vertebrate retina. Experientia 26: 1311–1312 (1970).

    Google Scholar 

  • Henkes, H.E. Electroretinography in circulatory disturbances of the retina. I. Electroretinogram in cases of occlusion of the central retinal vein or one of its branches. Arch. Ophthal. 49: 190–201 (1953).

    Google Scholar 

  • Henkes, H.E. & Houtsmuller, A.J. Fundus diabeticus. An evaluation of the preretinopathic stage. Am. J. Ophthal. 60: 662–670 (1965).

    Google Scholar 

  • Hösli, L. & Haas, H.L. The hyperpolarization of neurones of medulla oblongata by glycine. Experientia 28: 984–985 (1973).

    Google Scholar 

  • Hsia, Y & Graham, C.H. Spectral luminosity curves for protanopic, deuteranopic, and normal subject. Proc. National Academy of Science 43: 1011–1019 (1957).

    Google Scholar 

  • Jacobson, J.H. Clinical Electroretinography, Thomas, Springfield (1961).

    Google Scholar 

  • Jacobson, J.H., Kawasaki, K. & Hirose, T. The human electroretinogram and occipital potential in response to focal illumination of the retina. Invest. Ophthal. 8: 545–556 (1969).

    Google Scholar 

  • Jayle, G.E. & Boyer, R.L. Les données de l'électrorétinographie ‘dynamique’ dans la myopie. Electroretinographia, Symposium Luhacovice, 263–272 (1959). Lékarská fakulta university, J.E. Purkyne v Brne (1960).

  • Karpe, G. The basis of clinical electroretinography. Acta Ophthal. Supplement 24: 1–118 (1945).

    Google Scholar 

  • Kawaguchi, H., Yonemura, D., Kawasaki, K. & Yanagida, T. Acta Soc. Ophthal. Jpn. (1979) in preparation.

  • Kawasaki, K., Tanabe, J., Yanagida, T., Yamamoto, S. & Yonemura, D. Effects of polarizing current on the electroretinogram. VII. Effects on the human electroretinogram. Acta Soc. Ophthal. Jpn. 82: 288–291 (1978).

    Google Scholar 

  • Kawasaki, K., Tsuchida, Y. & Jacobson, J.H. Positive and negative deflections in the off-response of the electroretinogram in man. Am. J. Ophthal. 72: 367–375 (1971).

    Google Scholar 

  • Kawasaki, K., Yamamoto, S. & Yonemura, D. Electrophysiological approach to clinical test for the retinal pigment epithelium. Acta Soc. Ophthal. Jpn. 81: 1303–1312 (1977).

    Google Scholar 

  • Kline, R.P., Ripps, H. & Dowling, J.E. Generation of b-wave currents in the skate retina. Proc. National Academy of Science 75: 5727–5731 (1978).

    Google Scholar 

  • Kojima, K., Harada, T. & Miyaké, S. On the electron microscopic investigations of the Bruch's membrane and choriocapillaris in human diabetes mellitus. Acta Soc. Ophthal. Jpn. 80: 1633–1639 (1976).

    Google Scholar 

  • Korol, S. The effects of glycine on the rabbit retina: averaged ERG and averaged visual evoked responses. Experientia 29: 984–985 (1973).

    Google Scholar 

  • Korol, S., Leuenberger, P.M., Englert, U. & Babel, J. In vivo effects of glycine on retinal ultrastructure and averaged electroretinogram. Brain Res. 97: 235–251 (1975).

    Google Scholar 

  • Korol, S. & Owens, G.W. Glycine, strychnine and retinal inhibition. Experientia 30: 1161–1162 (1974).

    Google Scholar 

  • Langhof, H.-J. Gegensätzliche Wirkungen farbiger Adaptation auf den on und off-Effekt im Elektroretinogramm. Graef. Arch. Klin. exp. Ophthal. 204: 265–274 (1977).

    Google Scholar 

  • Ludvigh, E. & McCarthy, E.F. Absorption of visible light by the refractive media of the human eye. Arch. Ophthal. 20: 37–51 (1938).

    Google Scholar 

  • Macri, F.J. & Cevario, S.J. Blockade of the ocular effects of acetazolamide by phencyclidine. Exp. Eye Res. 24: 121–127 (1977).

    Google Scholar 

  • Marmor, M.F., Pockrand, P.M. & Lurie, M. Experiments toward the development of a clinical c-wave test. Proc. 16th Symposium of International Society for Clinical Electrophysiology of Vision. Jpn. J. Ophthal. Suppl. 107–111 (1979).

  • Marshall, J. & Voaden, M.J. An investigation of the cells incorporating [3H] GABA and [3H] glycine in the isolated retina of the rat. Exp. Eye Res. 18: 367–376 (1974).

    Google Scholar 

  • Matsuura, T., Miller, W.H. & Tomita, T. Cone-specific c-wave in the turtle retina. Vision Res. 18: 767–775 (1978).

    Google Scholar 

  • Matus, A.I. & Dennison, M.E. Autoradiographic localization of tritiated glycine at ‘flat vesicle’ synapses in spinal cord. Brain Res. 32: 195–197 (1971).

    Google Scholar 

  • Miller, R.F. & Dowling, J.E. Intracellular responses of the Müller (glial) cells of mudpuppy retina. Their relation to the b-wave of the electroretinogram. J. Neurophysiol. 33: 323–341 (1970).

    Google Scholar 

  • Morita, Y. Effects of temperature and sodium aspartate on the ERG of the albino rabbit retina. Acta Soc. Ophthal. Jpn. 75: 1071–1075 (1971).

    Google Scholar 

  • Murakami, M., Ohtsu, K. & Ohtsuka, T. Effects of chemicals on receptors and horizontal cells in the retina. J. Physiol. 227: 899–913 (1972).

    Google Scholar 

  • Murakami, M. & Shimoda, Y. Identification of amacrine and ganglion cells in the carp retina. J. Physiol. 264: 801–818 (1977).

    Google Scholar 

  • Nagata, M. Studies on photopic ERG of human eye. Acta Soc. Ophthal. Jpn. 66: 1614–1673 (1962).

    Google Scholar 

  • Nakajima, A. Clinical evaluation of ERG for its diagnostic value in routine practice in ophthalmology. Acta Soc. Ophthal. Jpn. 66: 1585–1616 (1962).

    Google Scholar 

  • Neal, M.J. Amino acid transmitter substances in the vertebrate retina. Gen. Pharmac. 7: 321–332 (1976).

    Google Scholar 

  • Neal, MJ. & Pickles, G.H. Uptake of 14C-glicine by spinal cord. Nature 222: 679–680 (1969).

    Google Scholar 

  • Nilsson, S.E.G. Ultrastructural organization and some basic electrophysiological features of the retinal pigment epithelium. The 23rd International Congress of Ophthalmology, Kyoto, May 17th (1978).

  • Nilsson, S.E.G. & Skoog, K.-O. Covariation of the simultaneously recorded c-wave and standing potential of the human eye. Acta Ophthal. 53: 721–730 (1975).

    Google Scholar 

  • Nishi, R. Enzyme-histochemical studies on the intraocular carbonic anhydrase and other enzymes in normal and corticosteroid-treated rabbits. Acta Soc. Ophthal. Jpn. 81: 1019–1029 (1977).

    Google Scholar 

  • Noell, W.K. Studies on the electrophysiology and metabolism of the retina. USAF School of Aviation Medicine, Project 21-1201-0004, Rept. 1 (1953).

  • Noell, W.K. The origin of the electroretinogram. Am. J. Ophthal. 38: 78–90 (1954).

    Google Scholar 

  • Oakley II, B. & Green, D.G. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J. Neurophysiol. 39: 1117–1133 (1976).

    Google Scholar 

  • Ogden, T.E. & Wylie, R.M. Avian retina. I. Microelectrode depth and marking studies of local ERG. J. Neurophysiol. 34: 357–366 (1971).

    Google Scholar 

  • Okano, T. Fluorescein angiography in diabetic retinopathy. Acta Soc. Ophthal. Jpn. 81: 69–134 (1977).

    Google Scholar 

  • Padmos, P. & Van Norren, D. Cone spectral sensitivity and chromatic adaptation as revealed by human flicker-electroretinography. Vision Res. 11: 27–42 (1971).

    Google Scholar 

  • Ring, G.H. & Fujino, T. Observations on the anatomy and pathology of the choroidal vasculature. Arch. Ophthal. 78: 431–444 (1967).

    Google Scholar 

  • Rushton, W.A.H. Physical measurement of cone pigment in the living human eye. Nature 179: 571–573 (1957).

    Google Scholar 

  • Saito, H. Inhibitory mechanisms within the receptive fields of Xand Y-type retinal ganglion cells of the cat. J. Physiol. Soc. Jpn. 38: 489–502 (1976).

    Google Scholar 

  • Schatz, H., Burton, T.C., Yannuzzi, L.A. & Rabb, M. Interpretation of Fundus Fluorescein Angiography. Mosby, Saint Louis (1978).

    Google Scholar 

  • Schmöger, E. Elektroretinographie bei Siderosis und Chalcosis. Klin. Mbl. Augenheilk. 128: 158–166 (1956).

    Google Scholar 

  • Shibata, N. Effects of L-cysteine on the ERG and standing potential of the rabbit's ERG. Acta Soc. Ophthal. Jpn. 81: 431–451 (1977).

    Google Scholar 

  • Sillman, A.J., Ito, H. & Tomita, T. Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. Vision Res. 9: 1435–1442 (1969).

    Google Scholar 

  • Simonsen, S.E. ERG in diabetics. Proc. 5th Symposium of International Society for Clinical Electroretinography, 403–412, Karger, New York (1968).

    Google Scholar 

  • Steinberg, R.H. & Miller, S. Aspects of electrolyte transport in frog pigment epithelium. Exp. Eye Res. 16: 365–372 (1973).

    Google Scholar 

  • Steinberg, R.H., Schmidt, R. & Brown, K.T. Intracellular responses to light from cat pigment epithelium. Origin of the electroretinogram c-wave. Nature 227: 728–730 (1970).

    Google Scholar 

  • Straub, W. Über den gegenwärtigen Stand der klinischen Elektroretinographie. Elektroretinographie. Hamburg Symposium. Bibliotheca Ophthal. 48: 137–160 (1957).

    Google Scholar 

  • Sugawara, K. & Negishi, K. Effects of some amino acids on light-induced responses in the isolated carp retina. Vision Res. 13: 2479–2489 (1973).

    Google Scholar 

  • Takahashi, R., Kurihara, H. & Mita, K. The course of development of oscillatory potentials in non-anesthetized infant albino rats. Proc. 16th Symposium of International Society for Clinical Electrophysiology of Vision. Jpn. J. Ophthal. Suppl. 331–337 (1979).

  • Tamai, A. Studies on the early receptor potential (ERP). I. ERP in diabetic retinopathy. Acta Soc. Ophthal. Jpn. 76: 911–920 (1972).

    Google Scholar 

  • Täumer, R., Wichmann, W. Rohde, N. & Röver, J. ERG of humans without c-wave. Graef. Arch Klin. exp. Ophthal. 198: 275–289 (1976).

    Google Scholar 

  • Textorius, O. The c-wave of the human electroretinogram in central retinal artery occlusion. Acta Ophthal. 56: 827–836 (1978).

    Google Scholar 

  • Textorius, O., Nilsson, S.E.G. & Skoog, K.O. The ERG c-wave in central retinal artery occlusion. Proc. 16th Symposium of International Society for Clinical Electrophysiology of Vision. Jpn. J. Ophthal. Suppl. 119–124 (1979).

  • Textorius, O., Skoog, K.O. & Nilsson, S.E.G. Studies on acute and late stages of experimental central retinal artery occlusion in the cynomolgus monkey. II. Influence on the cyclic changes in the amplitude of the c-wave of the ERG and in the standing potential of the eye. Acta Ophthal. 56: 665–676 (1978).

    Google Scholar 

  • Tomita, T. Light-induced potential and resistance changes in vertebrate photoreceptors. Physiology of Photoreceptor Organs. edited by M.G.F. Fourtes. Handbook of Sensory Physiology VII/2, 483–511, Springer-Verlag, Berlin (1972).

    Google Scholar 

  • Tomita, T., Kaneko, A. Murakami, M. & Pautler, E.L. Spectral response curves of single cones in the carp. Vision Res. 7: 519–531 (1967).

    Google Scholar 

  • Toyoda, J., Hashimoto, H. & Ohtsu, K. Bipolar-amacrine transmission in the carp retina. Vision Res. 13: 295–308 (1973).

    Google Scholar 

  • Tso, M.O.M. Pathology of retinal vascular diseases. The 32nd Meeting of Japanese Society of Clinical Ophthalmology. Nagoya, Oct. 20th (1978).

  • Tsuchida, Y., Kawasaki, K. & Jacobson, J.H. Rhythmic wavelets of the positive off effect in the human electroretinogram. Am. J. Ophthal. 72: 60–69 (1971).

    Google Scholar 

  • Ui, K. Photopic electroretinogram: Part I. Studies on normal and color blind subjects. Jpn. J. Ophthal. 19: 57–68 (1975).

    Google Scholar 

  • van der Tweel, L.H. Some proposals for standardization of ERG equipment. Acta Ophthal. Supplement 70: 87–96 (1962).

    Google Scholar 

  • van Lith, G.H.M. & Henkes, H.E. The local electric response of the central retinal area. Proc. 6th Symposium of International Society for Clinical Electroretinography. 163–170 (1968).

  • Voaden, M.J., Marshal, J. Murani, N. The uptake of [3H] γ-aminobutylic acid and [3H] glycine by the isolated retina of the frog. Brain Res. 67: 115–132 (1974).

    Google Scholar 

  • Wachtmeister, L. & Dowling, J.E. The oscillatory potentials of the mudpuppy retina. Invest. Ophthal. Visual Sci. 17: 1176–1188 (1978).

    Google Scholar 

  • Wachtmeister, L. & Dowling, J.E. Laminar profile study of the oscillatory potentials of the vertebrate electroretinogram (ERG). Proc. 16th Symposium of International Society for Clinical Electrophysiology of Vision. Jpn. J. Ophthal. Suppl. 355–360 (1979).

  • Wald, G. Human vision and the spectrum. Science 101: 653–658 (1945).

    Google Scholar 

  • Wald, G. & Brown, P.K. Human rhodopsin. Science 123: 222–226 (1958).

    Google Scholar 

  • Werblin, F.S. Regenerative amacrine cell depolarization and formation of on-off ganglion cell response. J. Physiol. 264: 767–785 (1977).

    Google Scholar 

  • Werman, R., Davidoff, R.A. & Aprison, M.H. Inhibitory action of glycine on spinal neurons in the cat. J. Neurophysiol. 31: 81–95 (1968).

    Google Scholar 

  • Whitten, D.N. & Brown, K.T. Photopic suppression of monkey's rod receptor potential, apparently by a cone-initiated lateral inhibition. Vision Res. 13: 1629–1658 (1973a).

    Google Scholar 

  • Whitten, D.N. & Brown, K.T. Slowed decay of the monkey's cone receptor potential by intense stimuli, and protection from this effect by light adaptation. Vision Res. 13: 1659–1667 (1973b).

    Google Scholar 

  • Willmer, E.N. Further observations on the properties of the central fovea in color blind and normal subjects. J. Physiol. 110: 422–446 (1949).

    Google Scholar 

  • Wu, S.M. & Dowling, J.E. L-Aspartate: evidence for a role in cone photoreceptor synaptic transmission in the carp retina. Proc. National Academy of Science 75: 5205–5209 (1978).

    Google Scholar 

  • Wyszecki, G. & Stiles, W.S. Color Science. John Wiley & Sons, New York, 1967.

    Google Scholar 

  • Yang, W.C., Hollenberg, M.J. & Wyse, J.P.H. Morphology of the retinal pigment epithelium in the vitamine A deficient rat. Virchows Arch. B. Cell Path. 27: 7–21 (1978).

    Google Scholar 

  • Yokoyama, M., Yoshida, T. & Ui, K. Spectral responses in the human electroretinogram and their clinical significance. Jpn. J. Ophthal. 17: 113–124 (1973).

    Google Scholar 

  • Yonemura, D. The oscillatory potential of the electroretinogram. Acta Soc. Ophthal. Jpn. 66: 1566–1584 (1962).

    Google Scholar 

  • Yonemura, D. An electrophysiological study on activities of neuronal and non-neuronal retinal elements in man with reference to its clinical application. Acta Soc. Ophthal. Jpn. 81: 1632–1665 (1977).

    Google Scholar 

  • Yonemura, D., Aoki, T. & Tsuzuki, K. Electroretinogram in diabetic retinopathy. Arch. Ophthal. 68: 19–24 (1962).

    Google Scholar 

  • Yonemura, D. & Hatta, M. Studies on the minor components of the electroretinogram. Jpn. J. Physiol. 16: 11–22 (1966).

    Google Scholar 

  • Yonemura, D. & Kawasaki, K. The early receptor potential in the human electroretinogram. Jpn. J. Physiol. 17: 235–244 (1967).

    Google Scholar 

  • Yonemura, D. & Kawasaki, K. Effects of polarizing current on the electroretinogram of the albino rabbit. Jpn. J. Ophthal. 16: 290–299 (1972).

    Google Scholar 

  • Yonemura, D. & Kawasaki, K. Electrophysiological study on activities of neuronal and non-neuronal retinal elements in man with reference to its clinical application. Jpn. J. Ophthal. 22: 195–213 (1978).

    Google Scholar 

  • Yonemura, D., Kawasaki, K. & Hasui, I. The early receptor potential in the human ERG. Acta Soc. Ophthal. Jpn. 70: 766–768 (1966).

    Google Scholar 

  • Yonemura, D., Kawasaki, K. & Ishikawa, C. The enhancement of the c-wave and abolition of the b-wave by intravenous injection of hypertonic solution. Acta Soc. Ophthal. Jpn. 80: 1610–1616 (1976).

    Google Scholar 

  • Yonemura, D., Kawasaki, K. & Kawaguchi, H. Enhancement of the electroretinographic c-wave with cysteine. Acta Soc. Ophthal. Jpn. 81: 268–274 (1977).

    Google Scholar 

  • Yonemura, D., Kawasaki, K. Shibata, N. & Tanabe, J. The electroretinographic P III component of the human excised retina. Jpn. J. Ophthal. 18: 322–333 (1974).

    Google Scholar 

  • Yonemura, D., Kawasaki, K. Usukura, H. Yanagida, T. & Yamamoto, S. Electroretinogram and electro-oculogram in occlusion of the central retinal artery. Acta Soc. Ophthal. Jpn. 81: 323–329 (1977).

    Google Scholar 

  • Yonemura, D., Kawasaki, K. & Yanagida, T. Disorders in the time course of the oscillatory potential under hypoxic conditions. Folia Ophthal. Jpn. 28: 779–785 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the Ministry of Education of Japan (No. 387129, No. 148279, No. A-339016) and from the Ministry of Public Welfare of Japan.

A part of this paper was prepared as a special lecture at the 16th Symposium of the International Society for Clinical Electrophysiology of Vision, at Morioka, in May 25, 1978.

Authors' address: Department of Ophthalmology School of Medicine Kanazawa University Kanazawa, Ishikawa 920 Japan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yonemura, D., Kawasaki, K. New approaches to ophthalmic electrodiagnosis by retinal oscillatory potential, drug-induced responses from retinal pigment epithelium and cone potential. Doc Ophthalmol 48, 163–222 (1979). https://doi.org/10.1007/BF00207350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207350

Key words

Navigation