Skip to main content
Log in

Expression of the gap junction protein connexin43 in embryonic chick lens: Molecular cloning, ultrastructural localization, and post-translational phosphorylation

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Lens epithelial cells are physiologically coupled to each other and to the lens fibers by an extensive network of intercellular gap junctions. In the rat, the epithelial-epithelial junctions appear to contain connexin43, a member of the connexin family of gap junction proteins. Limitations on the use of rodent lenses for the study of gap junction formation and regulation led us to examine the expression of connexin43 in embryonic chick lenses. We report here that chick connexin43 is remarkably similar to its rat counterpart in primary amino acid sequence and in several key structural features as deduced by molecular cDNA cloning. The cross-reactivity of an anti-rat connexin43 serum with chick connexin43 permitted definitive immunocytochemical localization of chick connexin43 to lens epithelial gap junctional plaques and examination of the biosynthesis of connexin43 by metabolic radiolabeling and immunoprecipitation. We show that chick lens cells synthesize connexin43 as a single, 42-kD species that is efficiently posttranslationally converted to a 45-kD form. Metabolic labeling of connexin43 with32P-orthophosphate combined with dephosphorylation experiments reveals that this shift in apparent molecular weight is due solely to phosphorylation. These results indicate that embryonic chick lens is an appropriate system for the study of connexin43 biosynthesis and demonstrate for the first time that connexin43 is a phosphoprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkinson, M.M., Menko, A.S., Johnson, R.G., Sheppard, J.R., Sheridan, J.D. 1981. Rapid and reversible reduction of junctional permeability in cells infected with a temperature-sensitive mutant of avian sarcoma virus.J. Cell Biol. 91:573–578

    PubMed  Google Scholar 

  • Azarnia, R., Reddy, S., Kmiecik, T.C., Shalloway, D., Loewenstein, W.R. 1988. The cellularsrc gene product regulates junctional cell-to-cell communication.Science 239:398–401

    PubMed  Google Scholar 

  • Benedetti, E.L., Dunia, I., Bloemendal, H. 1974. Development of junctions during differentiation of lens fibers.Proc. Natl. Acad. Sci. USA 71:5073–5077

    PubMed  Google Scholar 

  • Beyer, E.C., Goodenough, D.A., Paul, D.L. 1988. The connexins, a family of related gap junction proteins.In: Gap Junctions. E.L. Hertzberg and R.G. Johnson, editors. pp. 167–175. Alan R. Liss, New York

    Google Scholar 

  • Beyer, E.C., Kistler, J., Paul, D.L., Goodenough, D.A. 1989. Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues.J. Cell Biol. 108:595–605

    PubMed  Google Scholar 

  • Beyer, E.C., Paul, D.L., Goodenough, D.A. 1987. Connexin43: A protein from rat heart homologous to a gap junction protein from liver.J. Cell Biol. 105:2621–2629

    PubMed  Google Scholar 

  • Burt, J.M., Spray, D.C. 1988a. Inotropic agents modulate gap junctional conductance between cardiac myocytes.Am. J. Physiol. 254:H1206-H1210

    PubMed  Google Scholar 

  • Burt, J.M., Spray, D.C. 1988b. Single-channel events and gating behavior of the cardiac gap junction channel.Proc. Natl. Acad. Sci. USA 85:3431–3434

    PubMed  Google Scholar 

  • Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., Rutter, W.J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonnuclease.Biochemistry 18:5294–5299

    PubMed  Google Scholar 

  • Ebihara, L., Beyer, E.C., Swenson, K.I., Paul, D.L., Goodenough, D.A. 1989. Cloning and expression of aXenopus embryonic gap juction protein.Science 243:1194–1195

    PubMed  Google Scholar 

  • Feinberg, A.P., Vogelstein, B. 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 132:6–13

    PubMed  Google Scholar 

  • FitzGerald, P.G., Goodenough, D.A. 1986. Rat lens cultures: MIP expression and domains of intercellular coupling.Invest. Ophthalmol. Vis. Sci. 27:755–771

    PubMed  Google Scholar 

  • Flagg-Newton, J.L., Dahl, G., Loewenstein, W.R. 1981. Cell junction and cyclic AMP: I. Upregulation of junctional membrane permeability and junctional membrane particles by administration of cyclic nucleotide or phosphodiesterase inhibitor.J. Membrane Biol. 63:105–121

    Google Scholar 

  • Gimlich, R.L., Kumar, N.M., Gilula, N.B. 1988. Sequence and developmental expression of mRNA coding for a gap junction protein inXenopus.J. Cell Biol. 107:1065–1073

    PubMed  Google Scholar 

  • Goodenough, D.A., Dick, J.S.B., II, Lyons, J.E. 1980. Lens metabolic cooperation: A study of mouse lens transport and permeability visualized with freeze-substitution autoradiography and electron microscopy.J. Cell Biol. 86:576–589

    PubMed  Google Scholar 

  • Goodenough, D.A., Paul, D.L., Jesaitis, L. 1988. Topological distribution of two connexin32 antigenic sites in intact and split rodent hepatocyte gap junctions.J. Cell Biol. 107:1817–1824

    PubMed  Google Scholar 

  • Goodenough, D.A., Revel, J.P. 1971. The permeability of isolated and in situ mouse hepatic gap junctions studied with enzymatic tracers.J. Cell Biol. 50:81–91

    PubMed  Google Scholar 

  • Gruijters, W.T.M., Kistler, J., Bullivant, S., Goodenough, D.A. 1987. Immunolocalization of MP70 in lens fiber 16–17nm intercellular junctions.J. Cell Biol. 104:565–572

    PubMed  Google Scholar 

  • Helms, C., Graham, M.Y., Dutchik, J.E., Olson, M.V. 1985. A new method for purifying Lambda DNA from phage lysates.DNA 4:39–49

    PubMed  Google Scholar 

  • Kistler, J., Christie, D., Bullivant, S. 1988. Homologies between gap junction proteins in lens, heart and liver.Nature (London) 331:721–723

    Google Scholar 

  • Kistler, J., Kirkland, B., Bullivant, S. 1985. Identification of a 70,000-D protein in lens membrane junctional domains.J. Cell Biol. 101:28–35

    PubMed  Google Scholar 

  • Kumar, N.M., Gilula, N.B. 1986. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein.J. Cell Biol. 103:767–776

    PubMed  Google Scholar 

  • Kyte, J., Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein.J. Mol. Biol. 157:105–132

    PubMed  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  • Loewenstein, W.R. 1985. Regulation of cell-to-cell communication by phosphorylation.Biochem. Soc. Symp. London 50:43–58

    Google Scholar 

  • Mathias, R.T., Rae, J.L. 1985. Transport properties of the lens.Am. J. Physiol. 249:C181-C190

    PubMed  Google Scholar 

  • McLean, I.W., Nakane, P.K. 1974. Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectron microscopy.J. Histochem. Cytochem. 22:1077–1083

    PubMed  Google Scholar 

  • Meijer, L., Arion, D., Golsteyn, R., Pines, J., Brizuela, L., Hunt, T., Beach, D. 1989. Cyclin is a component of the sea urchin egg M-phase specific histone H1 kinase.EMBO J. 8:2275–2282

    PubMed  Google Scholar 

  • Melton, D.A., Krieg, P.A., Rebagliatti, M.R., Maniatis, T., Zinn, K., Green, M.R. 1984. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promotor.Nucleic Acids Res. 12:7035–7056

    PubMed  Google Scholar 

  • Menko, A.S., Klukas, K.A., Johnson, R.G. 1984. Chicken embryo lens cultures mimic differentiation in the lens.Dev. Biol. 103:129–141

    PubMed  Google Scholar 

  • Menko, A.S., Klukas, K.A., Liu, T.-F., Quade, B., Sas, D.F., Preus, D.M., Johnson, R.G. 1987. Junctions between lens cells in differentiating cultures: Structure, formation, intercellular permeability, and junctional protein expression.Dev. Biol. 123:307–320

    PubMed  Google Scholar 

  • Miller, T.M., Goodenough, D.A. 1985. Gap junction structures after experimental alteration of junctional channel conductance.J. Cell Biol. 101:1741–1748

    PubMed  Google Scholar 

  • Miller, T.M., Goodenough, D.A. 1986. Evidence for two physiologically distinct gap junctions expressed by the chick lens epithelial cell.J. Cell Biol. 102:194–199

    PubMed  Google Scholar 

  • Moria, A.O., Draetta, G., Beach, D., Wang, J.Y.J. 1989. Reversable tyrosine phosphorylation of cdc2: Dephosporylation accompanies activation during entry into mitosis.Cell 58:193–203

    PubMed  Google Scholar 

  • Musil, L.S., Carr, C., Cohen, J.B., Merlie, J.P. 1988. Acetylcholine receptor associated 43K protein contains covalently bound myristate.J. Cell Biol. 107:1113–1121

    PubMed  Google Scholar 

  • Nicholson, B.J., Zhang, J. 1988. Multiple protein components in a single gap junction: Cloning of a second hepatic gap junction protein (Mr 21,000).In: Gap Junctions. E.L. Hertzberg and R.G. Johnson, editors. pp. 207–218. Alan R. Liss, New York

    Google Scholar 

  • Patchinsky, T., Hunter, T., Esch, F.S., Cooper, J.A., Sefton, B.M. 1982. Analysis of the sequence of amino acids surrounding sites of tyrosine phosphorylation.Proc. Natl. Acad. Sci. USA 79:973–977

    PubMed  Google Scholar 

  • Paul, D.L. 1986. Molecular cloning of cDNA for rat liver gap junction protein.J. Cell Biol. 103:123–134

    PubMed  Google Scholar 

  • Paul, D.L., Goodenough, D.A. 1983. Preparation, characterization, and localization of antisera against bovine MP26, an integral protein from lens fiber plasma membrane.J. Cell Biol. 96:625–632

    PubMed  Google Scholar 

  • Peracchia, C. 1978. Calcium effects on gap junction structure and cell coupling.Nature London 271:669–671

    PubMed  Google Scholar 

  • Rae, J.L., Kuszak, J.R. 1983. The electrical coupling of epithelium and fibers in the frog lens.Exp. Eye Res. 36:317–326

    PubMed  Google Scholar 

  • Ralston, R., Bishop, J.M. 1985. The product of the protooncogenec-src is modified during the cellular response to plateletderived growth factor.Proc. Natl. Acad. Sci USA 82:7845–7849

    PubMed  Google Scholar 

  • Saez, J.C., Spray, D.C., Nairn, A.C., Hertzberg, E., Greengard, P., Bennett, M.V.L. 1986. cAMP increases junctional conductance and stimulates phosphorylation of the 27-kDa principal gap junction polypeptide.Proc. Natl. Acad. Sci USA 83:2473–2477

    PubMed  Google Scholar 

  • Sanger, F., Nicklen, S., Coulsen, A.R. 1977. DNA sequencing with chain terminating inhibitors.Proc. Natl. Acad. Sci. USA 79:441–445

    Google Scholar 

  • Schuetze, S.M., Goodenough, D.A. 1982. Dye transfer between cells of the embryonic chick lens becomes less sensitive to CO2-treatment with development.J. Cell Biol. 92:694–705

    PubMed  Google Scholar 

  • Swenson, K.I., Jordan, J.R., Beyer, E.C., Paul, D.L. 1989. Formation of gap junctions by expression of connexins inXenopus oocyte pairs.Cell 57:145–155

    PubMed  Google Scholar 

  • Traub, O., Look, J., Paul, D., Willecke, K. 1987. Cyclic adenosine monophosphate stimulates biosynthesis and phosphorylation of the 26kDa gap junction protein in cultured mouse hepatocytes.Eur. J. Cell Biol. 43:48–54

    PubMed  Google Scholar 

  • Wiener, E.C., Loewenstein, W.R. 1983. Correction of cell-cell communication defect by introduction of a protein kinase into mutant cells.Nature (London) 305:433–435

    Google Scholar 

  • Zampighi, G., Hall, J.E., Ehring, G.R., Simon, S.A. 1989. The structural organization and protein composition of lens fiber junctions.J. Cell Biol. 108:2255–2275

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musil, L.S., Beyer, E.C. & Goodenough, D.A. Expression of the gap junction protein connexin43 in embryonic chick lens: Molecular cloning, ultrastructural localization, and post-translational phosphorylation. J. Membrain Biol. 116, 163–175 (1990). https://doi.org/10.1007/BF01868674

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868674

Key Words

Navigation