Skip to main content
Log in

Video fluorescein angiography: Method and clinical application

  • Clinical Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Video fluorescein angiography, combined with a picture analyzing system, is a clinically applicable, objective method of evaluating the retinal blood-flow parameters. Optical density measurements were performed on videorecordings of fluorescence angiograms by means of a picture-analyzing system in order to determine the circulation parameters of the retina. These included: the arm-retina time (ART), the arteriovenous passage time (AVP), and the mean arterial dye-bolus velocity (MDV). Normal values for these parameters were derived from measurements in 75 healthy volunteers. The mean arm-retina time (ART) was 11.2 ± 3.3 s, the mean arteriovenous passage time (AVP) 1.45 ± 0.4 s and the mean arterial dye-bolus velocity (MDV) 6.39 ± 1.7 mm/s. No significant correlation could be shown between pulse or blood pressure and one of the retinal circulation parameters. A group of ten healthy volunteers was examined twice in order to obtain the intraindividual variation for the measuring parameters. The coefficient of variation for the ART was 18%, 10% for the AVP, and 26% for the MDV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertram B, Wolf S, Elbers M, Joussen W, Jung F, Reim M (1988) Untersuchung retinaler Kreislaufzeiten bei Patienten mit insulinpflichtigem Diabetes mellitus Typ II. Fortschr Ophthalmol 85:413–415

    Google Scholar 

  2. Davson M (1962) The eye. Academic Press, New York London

    Google Scholar 

  3. Fahraeus R, Lindquist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96:562–568

    Google Scholar 

  4. Feman SS, Schaffer C, Heuven WAJ van (1976) Advances in TV fluorangiography. Doc Ophthalmol, The Hague, vol 9, pp 19–23

    Google Scholar 

  5. Gomez-Ulla F, Wolf S, Reim M (1987) Medicion del fluido sanguineo retiniano en la diabetes por memedio de un sistema de analisis de imagenes aplicado a la videoangiographia fluoresceinica. St Ophthalmol 3:13–18

    Google Scholar 

  6. Gotham JG, Gilroy J, Meyer JS (1962) Studies of cerebral circulation time in man. I. Normal values and alterations with cerebral vascular disease and tumours in arm-to-retina circulation times. J Neurol Neurosurg Psychiatry 25:292

    Google Scholar 

  7. Hamilton WF, Moore JW, Kinsman JW, Spurling RG (1932) Studies on the circulation, IV. Further analysis of the injection method and of changes in hemodynamics and physiological and pathological conditions. Am J Physiol 84:524–532

    Google Scholar 

  8. Heuven WAJ, Schaffer CA (1973) Advances in televised flourescein angiography. In: Fluorescein angiography. ISFA, Tokyo. Igaku Shoin, Tokyo, pp 10–14

    Google Scholar 

  9. Jung F, Kiesewetter H, Körber N, Wolf S, Reim M, Müller G (1983) Quantification of characteristic blood-flow parameters in the vessels of the retina with a picture analysis system for video-fluorescence angiograms: initial findings. Graefe's Arch Clin Exp Ophthalmol 211:133–136

    Google Scholar 

  10. Körber N, Gesch M, Kiesewetter H, Reim M, Schmid-Schonbein H (1980) Fernsehfluoreszenzangiographie der Retina. Neue technische Aspekte. Graefe's Arch Clin Exp Ophthalmol 213:65–70

    Google Scholar 

  11. Körber N, Gesch M, Reim M, Kiesewetter H, Schmid-Schönbein H (1981) Zur Untersuchung der Retinadurchblutung mittels Fernsehfluoreszenzangiographie. Ber Dtsch Ophthalmol Ges 78:573–575

    Google Scholar 

  12. Körber N, Jung F, Kieswetter H, Wolf S, Prünte C, Stolze H, Reim M (1985) Fernsehfluoreszenzangiographie und Bildanalyse; Klinische Anwendung mit Fallbeispiel. Klin Monatsbl Augenheilkd 186:117–120

    Google Scholar 

  13. Kohner EM (1976) The problems of retinal blood flow in diabetes. Diabetes 25:839–844

    Google Scholar 

  14. Kohner EM, Hamilton AM, Saunders SJ, Sutcliffe BA, Bulpitt CJ (1975) The retinal blood flow in diabetes. Diabetologia 11:27–33

    Google Scholar 

  15. Littmann H (1956) Die Zeiss-Funduskamera. Ber Dtsch Ophthalmol Ges 59:318–321

    Google Scholar 

  16. Littmann H (1982) Zur Bestimmung der wahren Größe eines Objekts auf dem Hintergrund des gesunden Auges. Klin Monatsbl Augenheilkd 180:286–289

    Google Scholar 

  17. Miszalok V (1987) Video-Angiographie: Methode und Nomenklatur. Klin Monatsbl Augenheilkd 190:217–218

    Google Scholar 

  18. Miszalok V, Wollensak J (1985) Die arterio-venöse Passage von Fluorescein in der Retina: Bildanalyse und Bewertung. Fortschr Ophthalmol 82:625–626

    Google Scholar 

  19. Niesel P (1978) Normale Fluoreszenzangiographie. Retinale und chorioidale Kreislaufzeit. 5. Kongreß der Europäischen Gesellschaft für Ophthalmologie, Hamburg, 1976. Enke, Stuttgart

    Google Scholar 

  20. Niesel P (1980) Hämodynamik des uvealen und des retinalen Kreislaufs und die diagnostischen Möglichkeiten. Ophthalmologica 180:101–109

    Google Scholar 

  21. Novotny HR, Alvis DL (1960) A method for photographing fluorescence in circulating blood of the human eye. USAF Sch Aviat Med 60, 82:1–4

    Google Scholar 

  22. Oswald B, Visler W, Oswald H, Jütte A, Kö nigsdörffer E, Schweitzer D (1983) Messung von strömungsphysiologischen GroBen der Netzhautdurchblutung bei Normalpersonen. Graefe's Arch Clin Exp Ophthalmol 220:39–41

    Google Scholar 

  23. Preußner PR, Richard G, Darrelmann O, Weber J, Kreissig I (1983) Quantitative measurement of retinal blood flow in human beings by application of digital image-processing methods to television fluorescein angiograms. Graefe's Arch Clin Exp Ophthalmol 221:110–112

    Google Scholar 

  24. Reim M, Kiesewetter H, Korber N, Jung F, Raemaekers B, Wolf S (1987) Investigation by videofluorescence angiography of retinal blood circulation in central retinal vein occlusion. Acta XXV Concilium Ophthalmologicum. Proceedings of the XXVth International Congress of Ophthalmology, Rome, May 4–10, 1986, Kugler & Ghedini, Amsterdam, Berkeley Milano, pp 630–637

  25. Richard GW (1985) Differentiation of retinal circulation times by videoangiography. Ophthalmologica 191:161–163

    Google Scholar 

  26. Richard G (1984) Die Anwendung der Videoangiographie der Retina. Klin Monatsbl Augenheilkd 185:119–122

    Google Scholar 

  27. Riva CE, Feke GT, Ben-Sira I (1978) Fluorescein dye-dilution technique and retinal circulation. Am J Physiol 234:15–322

    Google Scholar 

  28. Riva CR, Feke GT, Eberli B, Benary V (1979) Bidirectional LDV system for absolute measurement of blood speed in retinal vessels. Appl Opt 18:2301–2306

    Google Scholar 

  29. Riva CE, Sinclair SH, Grunwald JE (1981) Autoregulation of retinal circulation in response to decrease of perfusion. Invest Ophthalmol Vis Sci 21:34–38

    Google Scholar 

  30. Riva CE, Grunwald JE, Sinclair SH, Petrig BL (1985) Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 26:1124–1132

    Google Scholar 

  31. Robinson F, Riva ChE, Grunwald JE, Petrig BL, Sinclair STH (1986) Retinal blood flow autoregulation in response to an acute increase in blood pressure. Invest Ophthalmol Vis Sci 27:722–726

    Google Scholar 

  32. Schulte AVM, Van Rens GH (1987) Retinal fluorotachometry (dynamic fluorescein angiography). In: BenEzra D, Ryan SJ, Glaser BM, Murphy RP (eds) Oscular circulation and neovascularisation. Nijhoff and Junk, Dordrecht, pp 11–22

    Google Scholar 

  33. Vilser W, Brandt HP, Königsdörffer E, Wittwer B, Jütte A, Dietze V (1979) Messungen zur Ermittlung des Blutvolumendurchflusses in großen retinalen Gefäßen des Menschen. Graefe's Arch Clin Exp Ophthalmol 212:41–47

    Google Scholar 

  34. Vyska K (1975) Theoretische Grundlagen zur Anwendung der Indikatordilutions-Kurven in der Radiokardiographie mit besonderer Berücksichtigung der Anwendung minimaler kardialer Transitzeiten in der klinischen Diagnostik. Habilitationsschrift. RWTH Aachen

  35. Wessing A (1974) Fluorescein-Fernseh-Angiographie der Netzhaut und der vorderen Augenabschnitte mit hochempfindlichen TV-Aufnahmeröhren. Klin Monatsbl Augenheilkd 165:817–822

    Google Scholar 

  36. Wolf S, Jung F, Körber N, Kiesewetter H, Reim M (1987) Measurement of retinal blood flow parameters by means of image analysis sytem for videofluorescence angiography. Acta XXV Concilium Ophthalmologicum. Proceedings of the XXVth Internationl Congress of Ophthalmology, Rome, May 4–10, 1986. Kugler & Ghedini, Amsterdam, Berkeley Milano, pp 204–208

  37. Wolf S, Körber N, Reim M, Ringelstein EB (1987) Ocular blood supply in internal carotid obstructions. In: BenEzra D, Ryan SJ, Glaser BM, Murphy RP (eds) Ocular circulation and neovascularisation. Nijhoff and Junk, Dordrecht, pp 37–42

    Google Scholar 

  38. Wolf S, Körber N, Mielke B, Grümmer M, Kiesewetter H, Jung F, Reim M (1987) Videoangiographische Untersuchungen bei juvenilen Diabetikerns. Fortschr Ophthalmol 84:607–610

    Google Scholar 

  39. Wolf S, Bertram B, Jung F, Kiesewetter H, Teping C, Reim M (1988) Videofluoreszenzangiographische Verlaufsbeobachtung bei Patienten mit retinalem Stase-Syndrom. Klin Monatsbl Augenheilkd 193:39–43

    Google Scholar 

  40. Wolf S, Roßberg U, Teping C, Reim M (1988) Videoangiographische Untersuchungen bei Patienten mit arterieller Hypertonie. Fortschr Ophthalmol 85: 580–582

    Google Scholar 

  41. Wolf S, Hoberg A, Bertram B, Kiesewetter H, Reim M (1988) Video fluorescein angiography in central retinal artery occlusion. Klin Monatsbl Augenheilkd (in press)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by: Deutsche Forschungsgemeinschaft AZ: Re 152/21, 1-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, S., Jung, F., Kiesewetter, H. et al. Video fluorescein angiography: Method and clinical application. Graefe's Arch Clin Exp Ophthalmol 227, 145–151 (1989). https://doi.org/10.1007/BF02169788

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02169788

Keywords

Navigation