Skip to main content
Log in

UV-absorbing intraocular lenses: Safety, efficacy, and consequences for the cataract patient

  • Laboratory Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

The crystalline lens absorbs most of the incident UV radiation between 300 and 400 nm and thereby protects the retina from a significant, potential source of photochemical damage. This protection is lost when the lens is removed by cataract surgery, but can be restored by the implantation of an intraocular lens (IOL) that has UV-absorbing chromophores incorporated into a polymethylmethacrylate (PMMA) substrate. Spectrophotometric data show that the various, commercially available, UV-absorbing IOLs are not equally effective in absorbing UV radiation; thus, a standard, quantitative metric for comparing their performance is proposed. Cytotoxicity and biocompatibility studies have failed to demonstrate that UV-absorbing IOLs are unsafe, even when damaged by Nd:YAG lasers used for photodiscission posterior capsulotomy. There are positive consequences for the pseudophakic patient with a UV-absorbing IOL, in that it may restore normal spectral sensitivity, reduce erythropsia and cystoid macular edema, and stabilize the blood-vitreous barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alpar JJ, Fechner PU (1986) Fechner's intraocular lenses. Thieme, New York

    Google Scholar 

  2. Bath PE, Brown P, Romberger A, Quon D (1986) Quantitative concepts in avoiding intraocular lens damage from the Nd:YAG laser in posterior capsulotomy. J Cataract Refract Surg 12:262–266

    Google Scholar 

  3. Berler DK, Peyser R (1983) Light intensity and visual acuity following cataract surgery. Ophthalmology 90:933–936

    Google Scholar 

  4. Boettner EA, Wolter JR (1962) Transmission of the ocular media. Invest Ophthalmol 1:776–783

    Google Scholar 

  5. Brandhorst H, Hickey J, Curtis H, Ralph E (1975) Interim solar cell testing procedures for terrestial applications. NASA Report TM X-71771, Lewis Research Center

  6. Brilliant LB, Grasset NC, Pokhrel RP, Kolstad A, Lepkowski JM, Brilliant GE, Hawks WN, Pararajasegaram R (1983) Associations among cataract prevalence, sunlight hours, and altitude in the Himalayas. Am J Epidemiol 118:250–264

    Google Scholar 

  7. Busse H, Popp E, Curschmann J (1986) Zur Implantation UV-absorbierender Hinterkammerlinsen. Klin Monatsbl Augenheilkd 189:330–333

    Google Scholar 

  8. Calkins JL, Hochheimer BF (1979) Retinal light exposure from operation microscopes. Arch Ophthalmol 97:2363–2367

    Google Scholar 

  9. Clark B, Johnson ML, Driker RE (1946) The effect of sunlight on dark adaptation. Am J Ophthalmol 29:828–836

    Google Scholar 

  10. Commoner B, Ternberg JL (1961) Free radicals in surviving tissues. Proc Natl Acad Sci USA 47:1374–1384

    Google Scholar 

  11. Cooper GF, Robson JG (1969) The yellow colour of the lens of man and other primates. J Physiol 203:411–417

    Google Scholar 

  12. Cutchis P (1974) Stratospheric ozone depletion and solar ultraviolet radiation on earth. Science 84:13–19

    Google Scholar 

  13. Dayhaw-Barker P, Forbes D, Fox D, Lerman S, McGinness J, Waxler M, Felten R (1986) Drug phototoxicity and visual health. In: Waxler M, Hitchins VM (eds) Optical radiation and visual health. CRC Press, Boca Raton, Fla

    Google Scholar 

  14. DeLuisi JJ, Harris JM (1983) A determination of the absolute energy of a Robertson-Berger meter sunburn unit. Atmos Environ 17:751–758

    Google Scholar 

  15. Fishman GA (1986) Ocular phototoxicity: guidelines for selecting sunglasses. Surv Ophthalmol 31:119–124

    Google Scholar 

  16. Food and Drug Administration (1980) Guidelines for intraocular lenses. FDA Center for Devices and Radiological Health, Washington, DC

    Google Scholar 

  17. Friedman E, Kuwabara T (1968) The retinal pigment epithelium: IV. The damaging effects of radiant energy. Arch Ophthalmol 80:265–279

    Google Scholar 

  18. Grams H (1985) Tests for leachability of UV chromophores in PMMA lenses: what do the results really mean? Intraocul Insights 1:1–4

    Google Scholar 

  19. Griess GA, Blankenstein MF (1981) Additivity and repair of actinic retinal lesions. Invest Ophthalmol Vis Sci 20:803–807

    Google Scholar 

  20. Gupta A (1984) Long-term aging behavior of ultraviolet-absorbing intraocular lenses. Am Intraocular Implant Soc J 10:309–314

    Google Scholar 

  21. Gupta A, Yavrouian A, di Stefano S, Merritt CD, Scott GW (1980) Photophysical and photochemical properties of poly(2-hydroxy-3-allyl-4,4′-dimethoxybenzophenone-co-methyl methacrylate): photochemical processes in polymeric systems. Macromolecules 13: 821–825

    Google Scholar 

  22. Ham WT, Mueller HA, Ruffolo JJ, Guerry D (1980) Solar retinopathy as a function of wavelength: its significance for protective eyewear. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum Press, New York

    Google Scholar 

  23. Ham WT, Mueller HA, Ruffolo JJ, Guerry D, Guerry RK (1982) Action spectrum for retinal injury from near-ultraviolet radiation in the aphakic monkey. Am J Ophthalmol 93:299–306

    Google Scholar 

  24. Ham WT, Allen RG, Feeney-Burns L, Marmor MF, Parver LM, Proctor PH, Sliney DH, Wolbarsht ML (1986) The involvement of the retinal pigment epithelium (RPE). In: Waxler M, Hitchins VM (eds) Optical radiation and visual health. CRC Press, Boca Raton, Fla

    Google Scholar 

  25. Harwerth RS, Sperling HG (1975) Effects of intense visible radiation on the increment-threshold spectral sensitivity of the rhesus monkey eye. Vision Res 15:1193–1204

    Google Scholar 

  26. Headon MP, Jacobs NA, Rosen ES (1986) Solar hazard: eclipse viewing in Manchester. In: Cronly-Dillon J, Rosen ES, Marshall J (eds) Hazards of light. Pergamon Press, Oxford

    Google Scholar 

  27. Hiller R, Giacometti L, Yuen K (1977) Sunlight and cataract: an epidemiologic investigation. Am J Epidemiol 105:450–459

    Google Scholar 

  28. Holladay JT, Bishop JE, Prager TC, Balker JW (1983) The ideal intraocular lens. CLAO J 9:15–19

    Google Scholar 

  29. Hollows F, Moran D (1981) Cataract — the ultraviolet risk factor. Lancet II: 1249–1250

    Google Scholar 

  30. Johnson FS, Mo T, Green AES (1976) Average latitudinal variation in ultraviolet radiation at the earth's surface. Photochem Photobiol 23:179–188

    Google Scholar 

  31. Jordan DR, Valberg JD (1986) Dychromatopsia following cataract surgery. Can J Ophthalmol 21:140–143

    Google Scholar 

  32. Keates RH, Genstler DE, Tarabichi S (1982) Ultraviolet light transmission of the lens capsule. Ophthalmic Surg 13:374–376

    Google Scholar 

  33. Kirkness CM, Weale RA (1985) Does light pose a hazard to the macula in aphakia? Trans Ophthalmol Soc UK 104:699–702

    Google Scholar 

  34. Kirschfeld K (1982) Carotenoid pigments: their possible role in protecting against photooxidation in eyes and photoreceptor cells. Proc R Soc London Ser B 216:71–85

    Google Scholar 

  35. Kraff MC, Sanders DR, Jampol LM, Lieberman HL (1985) Effect of an ultraviolet-filtering intraocular lens on cystoid macular edema. Ophthalmology 92:366–369

    Google Scholar 

  36. Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51:649–660

    Google Scholar 

  37. Lappin GR (1971) Ultraviolet radiation absorbers. In: Bikales NM (ed) Encyclopedia of polymer science and technology, vol 14. Wiley, New York

    Google Scholar 

  38. Lawwill T (1982) Three major pathologic processes caused by light in the primate retina: a search for mechanisms. Trans Am Ophthalmol Soc 88:518–579

    Google Scholar 

  39. Lawwill T, Crockett RS, Currier G (1977) Retinal damage secondary to chronic light exposure. Doc Ophthalmol 44:379–402

    Google Scholar 

  40. Lerman S (1984) Biophysical aspects of corneal and lenticular transparency. Curr Eye Res 3:3–14

    Google Scholar 

  41. Lerman S (1986) In vivo and in vitro biophysical studies on human cataractogenesis. Lens Res 3:137–160

    Google Scholar 

  42. Lerman S, Borkman R (1976) Spectroscopic evaluation and classification of the normal, aging and cataractous lens. Ophthalmic Res 8:335–353

    Google Scholar 

  43. Lindstrom RL, Doddi N (1986) Ultraviolet light absorption in intraocular lenses. J Cataract Refract Surg 12:285–289

    Google Scholar 

  44. Lindstrom RL, Skelnik DL, Mowbray SL (1985) Neodymium: YAG laser interaction with intraocular lenses: an in vitro toxicity assay. Am Intraocular Implant Soc J 11:558–563

    Google Scholar 

  45. MacFaul PA (1969) Visual prognosis after solar retinopathy. Br J Ophthalmol 53: 534–541

    Google Scholar 

  46. Mainster MA (1978) Spectral transmittance of intraocular lenses and retinal damage from intense light sources. Am J Ophthalmol 85:167–170

    Google Scholar 

  47. Mainster MA (1986) The spectra, classification, and rationale of ultraviolet-protective intraocular lenses. Am J Ophthalmol 102:727–732

    Google Scholar 

  48. Mainster MA, Ham WT, Delori F (1983) Potential retinal hazards: instrument and environmental light sources. Ophthalmology 90:927–931

    Google Scholar 

  49. Malik S, Cohen D, Meyer E, Perlman I (1986) Light damage in the developing retina of the albino rat: an electroretinographic study. Invest Ophthalmol Vis Sci 27:164–167

    Google Scholar 

  50. Marshall J (1978) Ageing changes in human cones. XXIII Concilium Ophthalmologicum. Elsevier/North Holland, Amsterdam

    Google Scholar 

  51. Marshall J (1983) Light damage and the practice of ophthalmology. In: Rosen ES, Maining WM, Arnott EJ (eds) Intraocular lens implantation. Mosby, St. Louis

    Google Scholar 

  52. Massof RW, Sykes SM, Rapp LM, Robison WG, Zwick H, Hochheimer B (1986) Optical radiation damage to the ocular photoreceptors. In: Waxler M, Hitchins VM (eds) Optical radiation and visual health. CRC Press, Boca Raton, Fla

    Google Scholar 

  53. McIntyre DJ (1985) Statistics on CME and UV lenses — 3 years. Paper presented at the American Intraocular Implant Society Meeting, Boston, April 1985

  54. Miller D (1987) Chap 4: Light and the cornea and conjunctiva. Chap 8: Ultraviolet-absorbing intraocular lens implants. In: Miller D (ed) Clinical light damage to the eye. Springer, New York Berlin Heidelberg

    Google Scholar 

  55. Miyake E (1985) Effects of IOL fixation of the blood-ocular barrier: Long-term follow-up studies. Paper presented at the American Intraocular Implant Society Meeting, Boston, April 1985

  56. Nash K (1986) Are UV IOLs performing well? What about long-term effects? Ophthalmology Times, 1 August, p 38

  57. Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol 5:459–473

    Google Scholar 

  58. Norren DV, Vos JJ (1974) Spectral transmission of the human ocular media. Vision Res 14:1237–1244

    Google Scholar 

  59. O'Steen WK, Anderson KC, Shear CR (1974) Photoreceptor degradation in albino rats: dependency on age. Invest Ophthalmol 13:334–339

    Google Scholar 

  60. Parver LM, Auker CR, Carpenter DO (1980) Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol 89:641–646

    Google Scholar 

  61. Peyman GA, Sloan HD, Lim J (1982) Ultraviolet light absorbing pseudophakos. Am Intraocular Implant Soc J 8:357–360

    Google Scholar 

  62. Peyman GA, Zak R, Sloane H (1983) Ultraviolet-absorbing pseudophakos: an efficacy study. Am Intraocular Implant Soc J 9:161–170

    Google Scholar 

  63. Pitts DG, Cullen AP, Hacker PD, Parr WH (1977) Ocular ultraviolet effects from 295 nm to 400 nm in the rabbit eye. U.S. Department of Health, Education and Welfare, (NIOSH) Publ. No. 77-175, Washington, DC

  64. Pitts DG, Cameron LL, Jose JG, Lerman S, Moss E, Varma SD, Zigler S, Zigman S, Zuclich J (1986) Optical radiation and cataracts. In: Waxler M, Hitchins VM (eds) Optical radiation and visual health. CRC Press, Boca Raton, Fla

    Google Scholar 

  65. Ranby B, Rabek JF (1975) Photodegradation, photo-oxidation and photostabilization of polymers. Wiley, New York

    Google Scholar 

  66. Ridley F (1957) Safety requirements for acrylic implants. Br J Ophthalmol 41:359–369

    Google Scholar 

  67. Rosenthal FS, Safran M, Taylor HR (1985) The ocular dose of ultraviolet radiation from sunlight exposure. Photochem Photobiol 42:163–171

    Google Scholar 

  68. Said FS, Weale RA (1959) The variation with age of the spectral transmissivity of the living human crystalline lens. Gerontology 3:213–231

    Google Scholar 

  69. Sliney DH (1986) Defining biological exposures to light. In: Cronly-Dillon J, Rosen ES, Marshall J (eds) Hazards of light. Pergamon Press, Oxford

    Google Scholar 

  70. Sperling HG (ed) (1980) Intense light hazards in ophthalmic diagnosis and treatment: proceedings of a symposium. Vision Res 20:1033-1203

  71. Sperling HG (1986) Spectral sensitivity, intense spectral light studies and the color receptor mosaic of primates. Vision Res 26:1557–1571

    Google Scholar 

  72. Sykes SM, Robison WG, Waxler M, Kuwabara T (1981) Damage to the monkey retina by broad-spectrum fluorescent light. Invest Ophthalmol Vis Sci 20:425–434

    Google Scholar 

  73. Taylor HR (1980) The environment and the lens. Br J Ophthalmol 64:303–310

    Google Scholar 

  74. Terry AC, Stark WJ, Maumenee AE, Fagadau W (1983) Neodymium-YAG laser for posterior capsulotomy. Am J Ophthalmol 96:716–720

    Google Scholar 

  75. Terry AC, Stark WJ, Newsome DA, Maumenee AE, Pina E (1985) Tissue toxicity of laser-damaged intraocular lens implants. Ophthalmology 92:414–418

    Google Scholar 

  76. Tso MOM, La Piana FG (1975) The human fovea after sungazing. Trans Am Acad Ophthalmol Otolaryngol 79:788–795

    Google Scholar 

  77. Vos JJ (1962) A theory of retinal burns. Bull Math Biophys 24:115–128

    Google Scholar 

  78. Waxler M, Hitchins VM (eds) (1986) Optical radiation and visual health. CRC Press, Boca Raton, Fla

    Google Scholar 

  79. Weale RA (1982) The age variation of ‘senile’ cataract in various parts of the world. Br J Ophthalmol 66:31–34

    Google Scholar 

  80. Weale RA (1988) Age and the transmittance of the human crystalline lens. J Physiol 395: 577–587

    Google Scholar 

  81. Werner JS (1982) Development of scotopic sensitivity and the absorption spectrum of the human ocular media. J Opt Soc Am 72:247–258

    Google Scholar 

  82. Werner JS, Hardenbergh FE (1983) Spectral sensitivity of the pseudophakic eye. Arch Ophthalmol 101:758–760

    Google Scholar 

  83. Williams TP, Baker BN (eds) (1980) The effects of constant light on visual processes. Plenum Press, New York

    Google Scholar 

  84. Young RW (1976) Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci 15: 700–725

    Google Scholar 

  85. Young RW (1981) A theory of retinal disease. In: Sears ML (ed) New directions in ophthalmic research. Yale University Press, New Haven

    Google Scholar 

  86. Young RW (1982) The Bowman lecture, 1982 Biological renewal. Applications to the eye. Trans Ophthalmol Soc UK 102:42–75

    Google Scholar 

  87. Young RW (1988) Solar radiation and age-related macular degeneration. Surv Ophthalmol 32:252–269

    Google Scholar 

  88. Zigman S, Vaughan T (1974) Near-ultraviolet light effects on the lenses and retinas of mice. Invest Ophthalmol Vis Sci 13:462–465

    Google Scholar 

  89. Zigman S, Datiles M, Torczynski E (1979) Sunlight and human cataracts. Invest Ophthalmol Vis Sci 18:462–467

    Google Scholar 

  90. Zrenner E, Lund O-E (1984) Die erhöhte Strahlungsbelastung der Netzhaut nach Implantation intraokularer Linsen und ihre Behebung durch farblose Filtergläser. Klin Monatsbl Augenheilkd 184:193–196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by funds from the National Institute on Aging (AG 04058) and the Deutsche Forschungsgemeinschaft (SFB 325, B4).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, J.S., Spillmann, L. UV-absorbing intraocular lenses: Safety, efficacy, and consequences for the cataract patient. Graefe's Arch Clin Exp Ophthalmol 227, 248–256 (1989). https://doi.org/10.1007/BF02172758

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172758

Keywords

Navigation