Skip to main content
Log in

Factors affecting the survival of cat retinal ganglion cells after optic nerve injury

  • Published:
Journal of Neurocytology

Summary

After partial transection of one optic nerve in adult cats the majority of β retinal ganglion cells degenerate and die 1 week after axotomy, whilst other cell classes degenerate slowly and survive for a long period after the lesion. We have investigated the effects of intravitreal and intraperitoneal injections of MK-801, a NMDA-glutamate receptor antagonist, on the early degeneration of retinal ganglion cells after partial optic nerve section. Control animals received saline intravitreal injections. Retinal flat mounts were retrogradely labelled with horseradish peroxidase and counterstained with Cresyl Violet. We evaluated the ganglion cell loss in the three experimental groups 1 week after lesion and compared them with normal uninjured controls and injured untreated retinae. In untreated retinae 49% of ganglion cells die 1 week after the lesion. Systemic MK-801 treatment prolonged survival of 41% of retinal ganglion cells that would die without treatment. Intravitreal MK-801 or saline prolonged survival of 71% of retinal ganglion cells that would die without treatment, but the results of saline administration had a larger range of variability. In untreated retinae many pyknotic cells were observed. The decreased in number after systemic MK-801 treatment and in some retinae treated with intravitreal injections of saline solution. There were no pyknotic cells after local, intravitreal MK-801 treatment. These results support the hypothesis that NMDA-receptor mediated neurotoxicity plays an important role in the early retinal ganglion cell death after retrobulbar axotomy. They also support the existence of an endogenous source of neurotrophins whose release is triggered by eyeball injury. We conclude that the early death of β retinal ganglion cells after axotomy occurs by a mechanism that can be controlled by neurotrophins and antagonists to NMDA-glutamate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, R. (1993) Ciliary neutrophic factor as an injury factor.Current Opinion in Neurobiology 3, 785–9.

    Google Scholar 

  • Aizenman, E., Frosh, M. P. &Lipton, S. A. (1988) Response mediated by excitatory amino acid receptors in solitary retinal ganglion cells from rat.Journal of Physiology 398, 75–91.

    Google Scholar 

  • Araujo, E. G. &Linden, R. (1993) Trophic factors produced by retinal ganglion cells increase the survival of retinal ganglion cellsin vitro.European Journal of Neuroscience 5, 1181–8.

    Google Scholar 

  • Arends, M. J., Morris, R. G. &Wyllie, A. H. (1990) Apoptosis: the role of endonucleases.American Journal of Pathology 136, 593–607.

    Google Scholar 

  • Berkelaar, M., Clarke, D. B., Wang, Y-Y., Bray, G. M., Aguayo, A. J. (1993) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adults rats.Journal of Neuroscience 14, 4368–74.

    Google Scholar 

  • Berkemeier, L. R., Winslow, J. W., Kaplan, D. R., Nikolics, K., Goeddel, D. V. &Rosenthal, A. (1991) Neurotrophin-5: a novel neurotrophic factor that activates TrK and TrK-B.Neuron 7, 857–66.

    Google Scholar 

  • Bonfoco, E., Krainic, D., Ankarcrona, M., Nicotera, P. &Lipton, S. A. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults withN-methyl-D-aspartate or nitric oxide/ superoxide in cortical cell cultures.Proceedings of the National Academy of Sciences (USA) 92, 7162–6.

    Google Scholar 

  • Boos, R., Müller, F. &Wässle, H. (1990) Actions of excitatory amino acids on brisk ganglion cells in the cat retina.Journal of Neurophysiology 64, 1368–79.

    Google Scholar 

  • Carmignoto, G., Maffel, L., Candeo, P., Canella, R. &Comelli, C. (1989) Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section.Journal of Neuroscience 9, 1763–72.

    Google Scholar 

  • Cheng, B. &Mattson, M. P. (1994) NT-3 and BDNF protect CNS neurons against metabolic/ excitotoxic insults.Brain Research 640, 56–67.

    Google Scholar 

  • Choi, D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system.Neuron 1, 623–34.

    Google Scholar 

  • Cohen, E. D. &Sterling, P. (1992) Parallel circuits from cones to the on-beta ganglion cells.European Journal of Neuroscience 4, 506–20.

    Google Scholar 

  • Dietrich, W. D. (1992) The importance of brain temperature in cerebral injury.Journal of Neurotrauma 9 (Suppl. 2) S475–85.

    Google Scholar 

  • Ehinger, B., Otterson, O. P., Storm-Mathisen, J. &Dowling, J. (1988) Bipolar cells in the turtle retina are strongly immunoreactive for glutamate.Proceedings of the National Academy of Sciences (USA) 85, 8321–5.

    Google Scholar 

  • Faktorovich, E. G., Steinberg, R. H., Yasumura, D., Matthes, M. T. &Lavail, M. M. (1990) Photoreceptor degeneration in inherited retinal dystrophy is delayed by basic fibroblastic growth factor.Nature 347, 83–6.

    Google Scholar 

  • Faktorovich, E. G., Steinberg, R. H., Yasumura, D., Matthes, M. T. &Lavail, M. M. (1992) Basic Fibroblast Growth Factor and local injury protect photoreceptors from light damage in rat.Journal of Neuroscience 12, 3554–67.

    Google Scholar 

  • Frazzini, V. I., Winfree, C. J., Choudhri, H. F., Prestigiacomo, C. J. &Solomon, P. A. (1994) Mild hypothermia and MK-801 have similar but not additive degrees of cerebroprotection in the rat permanent local ischemia model.Neurosurgery 34, 1040–5.

    Google Scholar 

  • Freed, M. A. &Sterling, P. (1988) The on-alpha ganglion cell of the cat retina and its presynaptic cell types.Journal of Neuroscience 8, 2303–20.

    Google Scholar 

  • Hahn, J. S., Aizenman, E. &Lipton, S. A. (1988) Central mammalian neurons normally resistant to glutamate toxicity are made sensitive by elevated extracellular Ca2+: toxicity is blocked by the N- methyl- D- aspartate antagonist MK-801.Proceedings of the National Academy of Sciences (USA) 85, 6556–60.

    Google Scholar 

  • Heumann, R., Korshing, S., Bandtlow, C. &Thoenen, H. (1987) Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection.Journal of Cell Biology 104, 1623–31.

    Google Scholar 

  • Holländer, H., Bisti, S., Maffei, L. &Hebel, R. (1984) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat.Experimental Brain Research 55, 483–93.

    Google Scholar 

  • Hughes, A. (1981) Population magnitudes and distribution of the major modal classes of cat retinal ganglion cell as estimated from HRP filling and a systematic survey of the some diameter spectra for classical neurones.Journal of Comparative Neurology 197, 303–39.

    Google Scholar 

  • Huxlin, K. R., Dreher, B., Schulz, M., Jervie Sefton, A. &Bennet, M. R. (1995) Effect of collicular proteoglycan on the survival of adult rat retinal ganglion cells following axotomy.European Journal of Neuroscience 7, 96–107.

    Google Scholar 

  • Ikeda, H., Kay, C. D. &Robbins, J. (1989) Properties of excitatory amino acid receptors on sustained ganglion cells in the rat retina.Neuroscience 32, 27–38.

    Google Scholar 

  • Ikeda, H., Dawes, E. &Hankins, M. (1992) Spontaneous firing level distinguishes the effects of NMDA and non-NMDA receptor antagonists on the ganglion cells in the cat retina.European Journal of Pharmacology 210, 53–9.

    Google Scholar 

  • Ip, N. Y., Ibánez, C. F., Nye, S. H., Mcclain, J., Jones, P. F., Gies, D. R., Belluscio, L., Le Beau, M. M., Espinosa III, R., Squinto, S. P., Persson, H. &Yancopoulos, G. D. (1992) Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity.Proceedings of the National Academy of Sciences (USA) 89, 3060–64.

    Google Scholar 

  • Jacobson, M. (1991)Developmental Neurobiology. New York: Plenum Press.

    Google Scholar 

  • Karschin, A., Aizenman, E. &Lipton, S. (1988) The interactions of agonist and noncompetitive antagonist at the excitatory amino acid receptors in rat retinal ganglion cellsin vitro.Journal of Neuroscience 8, 2895–906.

    Google Scholar 

  • Kerr, J. F. R., Wyllie, A. H. &Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics.British Journal of Cancer 26, 239–57.

    Google Scholar 

  • Kier, C. K., Sterling, P. &Buchsbaum, G. (1994) Peak sensitivity of the ganglion cell receptive field depends on the density of bipolar synapses serving the center.Investigative Ophthalmology and Visual Science 35, 2125.

    Google Scholar 

  • Kolb, H. (1979) The inner plexiform layer in the retina of the cat: electron microscopic observations.Journal of Neurocytology 8, 295–329.

    Google Scholar 

  • Kolb, H. &Dekorver, L. (1991) Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and seriyl reconstructions.Journal of Comparative Neurology 303, 617–36.

    Google Scholar 

  • Kostyk, S. D., D'Amore, P. A., Herman, I. M. &Wagner, J. A. (1994) Optic nerve injury alters basic fibroblast growth factor localization in the retina and optic tract.Journal of Neuroscience 14, 1441–9.

    Google Scholar 

  • Lavail, M. M., Unoki, K., Yasumura, D., Matthes, M. T., Yancopoulos, G. D. &Steinberg, R. H. (1992) Multiple growth factors, cytokines and neurotrophins rescue photoreceptors from damaging effects of constant light.Proceedings of the National Academy of Sciences (USA) 89, 11249–53.

    Google Scholar 

  • Mansour-Robaey, S., Clarke, D. B., Wang, Y-C., Bray, G. M. &Aguayo, A. J. (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells.Proceedings of the National Academy of Sciences (USA) 91, 1632–6.

    Google Scholar 

  • Marc, R. E., Liu, W. L., Kalliontis, M., Raiguel, S. F. &Van Jaesendonck, E. (1990) Patterns of glutamate immunoreactivity in the goldfish retina.Journal of Neuroscience 10, 4006–34.

    Google Scholar 

  • Massey, S. C. &Miller, R. F. (1990) N-methyl-D-aspartate receptors on ganglion cells in the rabbit retina.Journal of Neurophysiology 63, 16–30.

    Google Scholar 

  • Mccaffery, C. A., Bennett, M. R. &Dreher, B. (1982) The survival of rat retinal ganglion cellsin vitro is ehanced in the presence of appropriate parts of the brain.Experimental Brain Research 48, 377–86.

    Google Scholar 

  • Mcguire, B. A., Smith, R. G. &Sterling, P. (1986) Microcircuitry of beta ganglion cells in cat retina.Journal of Neuroscience 6, 907–918.

    Google Scholar 

  • Mey, J. &Thanos, S. (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult ratsin vivo.Brain Research 602, 304–17.

    Google Scholar 

  • Meyer, M., Matsuoka, I., Wetmore, C., Olson, L. &Thoenen, H. (1992) Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: Different mechanisms are responsible for the regulation of BDNF and NGF mRNA.Journal of Cell Biology 119, 45–54.

    Google Scholar 

  • Mitchell, J. I., Lawson, S., Moser, B., Laidlaw, S. M., Cooper, A. J., Walkinshaw, G. &Waters, C. M. (1994) Glutamate-induced apoptosis results in a loss of striatal neurons in the Parkinsonian rat.Neuroscience 63, 1–5.

    Google Scholar 

  • Mittman, S., Taylor, W. R. &Copenhagen, D. R. (1990) Concommitant activation of two types of glutamate receptor mediates excitation of salamander retinal ganglion cells.Journal of Physiology 428, 175–97.

    Google Scholar 

  • Mosinger, J. L., Price, M. T., Bai, H. Y., Xiao, H., Wozniak, D. F. &Olney, J. W. (1991) Blockage of both NMDA and non-NMDA receptors is required for optimal protection against ischemic neuronal degeneration in thein vivo adult mammalian retina.Experimental Neurology 113, 10–17.

    Google Scholar 

  • Naito, J. (1986) Course of retinogeniculate projection fibers in the cat optic nerve.Journal of Comparative Neurology 251, 376–87.

    Google Scholar 

  • Perry, V. H., Oehler, R. &Cowey, A. (1984) Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey.Neuroscience 12, 1102–23.

    Google Scholar 

  • Quigley, H. A., Nickells, R. W., Kerrigan, I. A., Pease, M. E., Thibault, D. J. &Zach, D. J. (1995). Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis.Investigative Ophthalmology and Visual Science 56, 841–51.

    Google Scholar 

  • Rabacchi, S. A., Bonfanti, L., Liu, X.-H., Maffei, L. (1994a) Apoptotic cell death induced by optic nerve lesion in the neonatal rat.Journal of Neuroscience 14, 5292–301.

    Google Scholar 

  • Rabacchi, S. A., Ensini, M., Bonfanti, L., Gravina, A. &Maffei, L. (1994b) Nerve Growth Factor reduces apoptosis of axotomized retinal ganglion cells in neonatal rat.Neuroscience 63, 969–73.

    Google Scholar 

  • Shu, S., Ju, G. &Fan, L. (1988) The glucose oxidase-DAB-nickel method in peroxidase histochemistry of nervous system.Neuroscience Letters 85, 169–71.

    Google Scholar 

  • Sievers, J., Hausmann, B., Unsicker, K. &Berry, M. (1987) Fibroblast growth factors promote survival of rat retinal ganglion cells after transection of the optic nerve.Neuroscience Letters 76, 157–62.

    Google Scholar 

  • Siliprandi, R., Canella, R., Carmignoto, G., Schiavo, N., Zanellato, A., Zanoni, R. &Vantini, G. (1992) N-methyl-D-aspartate-induced neurotoxicity in the adult rat retina.Visual Neuroscience 8, 567–73.

    Google Scholar 

  • Silveira, L. C. L. (1985)Organização do Sistema Visual de Roedores da Amazônia: Óptica Ocular e Distribuição das Células Ganglionares Retinianas. PhD. Thesis. Rio de Janeiro: Instituto de Biofísica, Universidade Federal do Rio de Janeiro.

    Google Scholar 

  • Silveira, L. C. L., Russelakis-Carneiro, M. &Perry, V. H. (1994) The ganglion cell response to optic nerve injury in the cat: differential responses revealed by neurofibrillar staining.Journal of Neurocytology 23, 75–86.

    Google Scholar 

  • Slaughter, M. &Miller, R. F. (1983a) Bipolar cells in mudpuppy use an excitatory amino acid neurotransmitter.Nature 303, 537–8.

    Google Scholar 

  • Slaughter, M. &Miller, R. F. (1983b) An excitatory amino acid antagonist blocks cone input to sign-conserving second order retinal neurons.Science 219, 1230–2.

    Google Scholar 

  • Slaughter, M. &Miller, R. F. (1983c) The role of excitatory amino acid transmitters in the mudpuppy retina: an analysis with kainic acid and N-methyl-D-aspartate.Journal of Neuroscience 3, 1701–11.

    Google Scholar 

  • Steinberg, R. H. (1994) Survival factors in retinal degenerations.Current Opinion in Neurobiology 4, 515–24.

    Google Scholar 

  • Tachibana, M. &Okada, T. (1991) Release of endogenous excitatory amino acids from ON-type bipolar cells isolated from goldfish retina.Journal of Neuroscience 11, 2199–208.

    Google Scholar 

  • Thanos, S., Bähr, M., Barde, Y. A. &Vanselow, J. (1989) Survival and axonal elongation of adult retinal ganglion cells.In vitro effects of lesioned sciatic nerve and brain derived neurotrophic factors.European Journal of neuroscience 1, 19–26.

    Google Scholar 

  • Wong, R. O. L. &Hughes, A. (1987) The morphology, number, and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina.Journal of Comparative Neurology 255, 159–77.

    Google Scholar 

  • Yazejian, B. &Fain, G. L. (1992) Excitatory amino acid receptors on isolated retinal ganglion cells from the goldfish.Journal of Neurophysiology 67, 94–107.

    Google Scholar 

  • Zeevalk, G. D. &Nicklas, W. J. (1989) Acute neurotoxicity in chick retina caused by the unusual amino acids BOAA and BMAA: effects of MK-801 and Kynurate.Neuroscience Letters 102, 204–90.

    Google Scholar 

  • Zeelvalk, G. D. &Nicklas, W. J. (1990) Chemically induced hypoglycemia and anoxia: relationship to glutamate receptor-mediated toxicity in retina.Journal of Pharmacology and Experimental Therapeutics 253, 1285–92.

    Google Scholar 

  • Zeelvalk, G. D. &Nicklas, W. J. (1994) Nitric oxide in retina-relation to excitatory amino acids and excitotoxicity.Experimental Eye Research 58, 343–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russelakis-Carneiro, M., Silveira, L.C.L. & Perry, V.H. Factors affecting the survival of cat retinal ganglion cells after optic nerve injury. J Neurocytol 25, 393–402 (1996). https://doi.org/10.1007/BF02284810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02284810

Keywords

Navigation