Skip to main content
Log in

Poröse Orbitaimplantate

Porous orbital implants

  • Das therapeutische Prinzip
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Seit der Einführung des ersten porösen Orbitaimplantats als Bulbusersatz in Form eines korallinen Hydroxylapatits in den frühen 80er-Jahren des vergangenen Jahrhunderts stehen zahlreiche weitere modifizierte poröse Implantattypen zur Verfügung. Aufgrund des unterschiedlichen Designs der bisher vorhandenen Studien zur Langzeitverträglichkeit und aufgrund der zum Teil kurzen Nachbeobachtungszeit ist keiner der Implantattypen klar zu favorisieren. Einflussfaktoren auf die Expositionsrate scheinen u. a. die Ummantelung des Implantats, die chirurgische Technik und die operative Ausgangssituation zu sein.

Abstract

Since the introduction of the first coralline hydroxyapatite porous orbital implant as eye replacement in the early 1980s, numerous other modified porous implants have been developed. Due to the different design of the existing studies concerning long-term safety with, in some cases, relatively short follow-up, a comparison is difficult and none of the implant types can be clearly identified as being superior. Factors affecting the exposure rate of the implant seem to be the implant coating, the surgical technique and the condition of the patient’s tissue at the beginning of surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Alwitry A, West S, King J, Foss AJ et al (2007) Long-term follow-up of porous polyethylene spherical implants after enucleation and evisceration. Ophthal Plast Reconstr Surg 23:11–15

    Article  CAS  PubMed  Google Scholar 

  2. Bilyk JR, Rubin PA, Shore JW (1992) Correction of enophthalmos with porous polyethylene implants. Int Ophthalmol Clin 32:151–156

    Article  CAS  PubMed  Google Scholar 

  3. Blaydon SM, Shepler TR, Neuhaus RW et al (2003) The porous polyethylene (Medpor) spherical orbital implant: a retrospective study of 136 cases. Ophthal Plast Reconstr Surg 19:364–371

    Article  PubMed  Google Scholar 

  4. Chen YH, Cui HG (2006) High density porous polyethylene material (Medpor) as an unwrapped orbital implant. J Zhejiang Univ Sci B 7:679–682

    Article  PubMed Central  PubMed  Google Scholar 

  5. Cleres B, Emmerich KH, Meyer-Rüsenberg HW (2011) Verträglichkeit eines Polymer ummantelten Bio-eye Hydroxylapatits (Coated HA) als Orbitaimplantat versus eines Sklera ummantelten Hydroxylapatit-Implantats, Poster DOG, Berlin

  6. Colen TP, Paridaens DA, Lemij HG et al (2000) Comparison of artificial eye amplitudes with acrylic and hydroxyapatite spherical enucleation implants. Ophthalmology 107:1889–1894

    Article  CAS  PubMed  Google Scholar 

  7. Custer PL (2000) Enucleation. Past, present and future. Ophthal Plast Reconstr Surg 16:316–321

    Article  CAS  PubMed  Google Scholar 

  8. Custer PL, Trinkaus KM, Fornoff J (1999) Comparative motility of hydroxyapatite and alloplastic enucleation implants. Ophthalmology 106:513–516

    Article  CAS  PubMed  Google Scholar 

  9. Cyster LA, Grant DM, Howdle SM et al (2005) The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials 26:697–702

    Article  CAS  PubMed  Google Scholar 

  10. Duffy P, Wolf J, Collins G et al (1974) Possible person to person transmission of Creuzfeld-Jakob disease. N Engl J Med 290:692–693

    CAS  PubMed  Google Scholar 

  11. Edelstein C, Shields CL, De Potter P et al (1997) Complications of motility peg placement for the hydroxyapatite orbital implant. Ophthalmology 104:1616–1621

    Article  CAS  PubMed  Google Scholar 

  12. Fahim DK, Frueh BR, Musch DC et al (2007) Complications of pegged and non-pegged hydroxyapatite orbital implants. Ophthal Plast Reconstr Surg 23:206–210

    Article  PubMed  Google Scholar 

  13. Fan JT, Robertson DM (1995) Long-term follow-up of the Allen implant. 1967 to 1991. Ophthalmology 102:510–516

    Article  CAS  PubMed  Google Scholar 

  14. Frost WA (1887) What ist the best method of dealing with the lost eye? Br Med J 1:1153–1154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gayre GS, Lipham W, Dutton JJ (2002) A comparison of rates fibrovascular ingrowth in wrapped verus unwrapped hydroxyapatite spheres in a rabbit model. Ophthal Plast Reconstr Surg 18:275–280

    Article  PubMed  Google Scholar 

  16. Guillinta P, Vasani SN, Granet DB et al (2003) Prosthetic motility in pegged versus unpegged integrated porous orbital implants. Ophtal Plast Reconstr Surg 19:119–122

    Article  Google Scholar 

  17. Gupta M, Puri P, Rennie IG (2002) Use of bovine pericardium as a wrapping material for hydroxyapatite orbital implants. Br J Ophthalmol 86:288–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Guthoff R, Vick HP, Schaudig U (1995) Zur Prophylaxe des Postenukleationssyndrom: Das Hydroxylapatitsilikon-Implantat. Experimentelle Vorarbeiten und erste klinische Erfahrungen. Ophthalmologe 92:198–205

    CAS  PubMed  Google Scholar 

  19. Habibovic P, Yuan H, Valk CM van der et al (2005) 3D microenviroment as essential element for osteoinduction by biomaterials. Biomaterials 26:3565–3575

    Article  CAS  PubMed  Google Scholar 

  20. Hing KA, Best SM, Tanner KE et al (2004) Mediation of bone ingrowth in porous hydroxapatite bone graft substitutes. J Biomed Mater Res A 68:187–200

    Article  PubMed  Google Scholar 

  21. Hornblass A, Biesman BS, Eviatar JA (1995) Current technique of enucleation: a survey of 5, 439 intraorbital implants and a review of the literature. Ophthal Plast Reconstr Surg 11:77–88

    Article  CAS  PubMed  Google Scholar 

  22. Iordanidou V, De Potter P (2004) Porous polyethylene orbital implant in the pediatric population. Am J Ophthalmol 138:425–429

    Article  PubMed  Google Scholar 

  23. Johnson RLC, Ramstead CL, Nathoo N (2011) Pegging the porous orbital implant. Ophthal Plast Reconstr Surg 27:74–75

    Article  PubMed  Google Scholar 

  24. Jordan DR, Brownstein S, Dorey M et al (2004) Fibrovascularization of porous polyethylene (Medpor) orbital implant in a rabbit model. Ophthal Plast Reconstr Surg 20:136–143

    Article  CAS  PubMed  Google Scholar 

  25. Jordan DR, Chan S, Mawn L et al (1999) Complications associated with pegging hydroxyapatite orbital implants. Ophthalmology 106:505–512

    Article  CAS  PubMed  Google Scholar 

  26. Jordan DR, Gilberg S, Bawazeer A (2004) Coralline hydroxyapatite orbital implant (bio-eye): experience with 158 patients. Ophthal Plast Reconstr Surg 20:69–74

    Article  PubMed  Google Scholar 

  27. Jordan DR, Gilberg S, Mawn LA (2003) The bioceramic orbital implant: experience with 107 implants. Ophthal Plast Reconstr Surg 19:128–135

    Article  PubMed  Google Scholar 

  28. Jordan DR, Hwang I, Brownstein S et al (2000) The Molteno M-Sphere. Ophthal Plast Reconstr Surg 16:356–362

    Article  CAS  PubMed  Google Scholar 

  29. Jordan DR, Klapper SR, Gilber SM (2003) The use of vicryl mesh in 200 porous orbital implants: a technique with few exposures. Ophthal Plast Reconstr Surg 19:53–61

    Article  PubMed  Google Scholar 

  30. Jordan DR, Mawn LA, Browstein S et al (2000) The bioceramic orbital implant: a new generation of porous implants. Ophthal Plast Reconstr Surg 16:347–355

    Article  CAS  PubMed  Google Scholar 

  31. Jordan DR, Munro SM, Brownstein S et al (1998) A synthetic hydroxyapatite implant: the so-called counterfeit implant. Ophthal Plast Reconstr Surg 14:244–249

    Article  CAS  PubMed  Google Scholar 

  32. Karesh JW, Dresner SC (1994) High-density porous polyethylene (Medpor) as a successful anophtalmic socket implant. Ophthalmology 101:1688–1696

    Article  CAS  PubMed  Google Scholar 

  33. Kassaee A, Kashkouli MB, Panjtanpanah M et al (2006) Mersilene mesh versus sclera in wrapping hydroxyapatite orbital implants. Ophthal Plast Reconstr Surg 22:41–44

    Article  PubMed  Google Scholar 

  34. Klapper SR, Jordan DR, Ells A et al (2003) Hydroxyapatite orbital implant vascularization assessed by magnetic resonance imaging. Ophthal Plast Reconstr Surg 19:46–52

    Article  PubMed  Google Scholar 

  35. Klett A, Guthoff R (2003) Wie lässt sich die Prothesenmotilität verbessern? Der Einfluss von Fornixtiefe und Gewebsdicke vor einem Hydroxylapatitsilikon-Implantat bei 66 Patienten. Ophthalmologe 100:445–448

    CAS  PubMed  Google Scholar 

  36. Lin CJ, Liao SL, Jou JR et al (2002) Complications of motility peg placement for porous hydroxyapatite orbital implants. Br J Ophthalmol 4:394–396

    Article  Google Scholar 

  37. Lumbroso L, Levy C, Plancher C et al (2000) Complications of hydroxyapatit orbital implants in children: a series of 105 cases. J Fr Ophtalmol 23:249–254

    CAS  PubMed  Google Scholar 

  38. Lusky M, Weinreb RN (1992) Preservation of scleral grafts to avoid HIV infection. J Glaukoma 1:221

    Article  CAS  Google Scholar 

  39. Mawn LA, Jordan DR, Gilberg S (1998) Scanning electron microscopic examination of porous orbital implants. Can J Ophthalmol 33:203–209

    CAS  PubMed  Google Scholar 

  40. Mules PH (1885) Evisceration of the globe with artificial vitreous. Trans Ophthalmol Soc U K 5:200–206

    Google Scholar 

  41. Norda AG, Meyer-Rüsenberg HW (1998) Hydroxylapatitplomben-Implantation nach Enukleation – Erfahrungen in 112 Fällen. Spektrum Augenheilkd 12:101–107

    Article  Google Scholar 

  42. Norda AG, Meyer-Rüsenberg HW (2000) Langzeitresultate mit der Implantation von Hydroxylapatit als Bulbusersatz. Ophthalmologe 97:91–99

    Article  CAS  PubMed  Google Scholar 

  43. Nunery WR, Heinz GW, Bonnin JM et al (1993) Exposure rate of hydroxyapatite spheres in the anophthalmic socket: histopathologic correlation and comparison with silicone sphere implants. Ophthal Plast Reconstr Surg 9:96–104

    Article  CAS  PubMed  Google Scholar 

  44. Perry AC (1991) Advances in enucleation. Ophthalmol Clin North Am 4:173–182

    Google Scholar 

  45. Rosen HM, McFarland MM (1990) The biologic behavior of hydroxyapatite implanted into the maxillofacial skeleton. Plast Reconstr Surg 85:718–723

    Article  CAS  PubMed  Google Scholar 

  46. Sadiq SA, Mengher LS, Lowry J et al (2008) Integrated orbital implants – a comparison of hydroxyapatite and porous polyethylene implants. Orbit 27:37–40

    Article  PubMed  Google Scholar 

  47. Seiff SR, Chang JS, Hurt MH et al (1994) Polymerase chain reaction identification of human immunodeficiency virus-1 in preserved human sclera. Am J Ophthalmol 118:528–530

    CAS  PubMed  Google Scholar 

  48. Shields JA, Shields CL, De Poter P (1993) Hydroxyapatite orbital implant after enucleation- experience with 200 cases. Mayo Clin Proc 68:1191–1195

    Article  CAS  PubMed  Google Scholar 

  49. Shields CL, Shields JA, De Potter P et al (1993) Lack of complications of the hydroxyapatite orbital implant in 250 consecutive cases. Trans Am Ophthalmol Soc 91:177–195

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Shields CL, Shields JA, Eagle RC et al (1991) Histopathologic evidence of fibrovascular ingrowth four weeks after placement of the hydroxyapatite orbital implant. Am J Ophthalmol 111:363–366

    CAS  PubMed  Google Scholar 

  51. Shields CL, Uysal Y, Marr BP et al (2007) Experience with the polymer-coated hydroxyapatite implant after enucleation in 126 patients. Ophthalmology 114:367–373

    Article  PubMed  Google Scholar 

  52. Su GW, Yen MT (2004) Current trends in managing the anophthalmic socket after primary enucleation and evisceration. Ophthal Plast Reconstr Surg 20:274–280

    Article  PubMed  Google Scholar 

  53. Suter AJ, Molteno ACB, Bevin TH et al (2002) Long term follow up of bone derived hydroxyapatite orbital implants. Br J Ophthalmol 86:1287–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Tabatabaee Z, Mazloumi M, Rajabi MT et al (2011) Comparison of the exposure rate of wrapped hydroxyapatite (Bio-eye) versus unwrapped porous polyethylene (Medpor) orbital implants in enucleated patients. Ophthal Plast Reconstr Surg 27:114–118

    Article  PubMed  Google Scholar 

  55. Toh TY, Bevin TH, Molteno ACB (2008) Scleral wrap increases the long-term complication risk of bone-derived hydroxyapatite orbital implants. Clin Experiment Ophthalmol 36:756–761

    Article  PubMed  Google Scholar 

  56. Trichopoulas N, Ausburger JJ (2005) Enucleation with unwrapped porous and nonporous orbital implants: a 15-year experience. Ophthal Plast Reconstr Surg 21:331–336

    Article  Google Scholar 

  57. Tyres AG, Collin JR (1985) Baseball orbital implants: a review of 39 patients. Br J Ophthalmol 69:438–442

    Article  Google Scholar 

  58. Van Acker E, De Potter P (2001) Porous polyethylene (Medpor) orbital implantat. Prospective study of 75 primary implantations. J Fr Ophtalmol 24:1067–1073

    Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. B. Cleres und H.W. Meyer-Rüsenberg geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Cleres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cleres, B., Meyer-Rüsenberg, H. Poröse Orbitaimplantate. Ophthalmologe 111, 572–576 (2014). https://doi.org/10.1007/s00347-013-2950-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-013-2950-7

Schlüsselwörter

Keywords

Navigation