Skip to main content

Advertisement

Log in

Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage

  • Clinical Investigation
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

The aim was to compare the ability of confocal scanning laser ophthalmoscopy (CSLO), scanning laser polarimetry (SLP), and optical coherence tomography (OCT) to discriminate eyes with ocular hypertension (OHT), glaucoma-suspect eyes (GS) or early glaucomatous eyes (EG) from normal eyes.

Methods

Ocular hypertension, GS, and EG were defined as normal disc with intraocular pressure >21 mmHg, glaucomatous disc without visual field loss, and glaucomatous disc accompanying the early glaucomatous visual filed loss respectively. Ninety-three normal eyes, 26 OHT, 55 GS, and 67 EG were enrolled. Optic disc configuration was analyzed by CSLO (version 3.04), whereas retinal nerve fiber layer thickness was analyzed by SLP (GDx-VCC; version 5.3.2) and OCT-1 (version A6X1) in each individual. The measurements were compared in the four groups of patients. Receiver operating characteristic curve (ROC) and area under the curve (AUC) discriminating OHT, GS or EG from normal eyes were compared for the three instruments.

Results

Most parameters in GS and EG eyes showed significant differences compared with normal eyes. However, there were few significant differences between normal and OHT eyes. No significant differences were observed in AUCs between SLP and OCT. In EG eyes, the greatest AUC parameter in OCT (inferior—120; 0.932) had a higher AUC than that in CSLO (vertical cup/disc ratio; 0.845; P=0.017). In GS, the greatest AUC parameter in OCT (average retinal nerve fiber layer [RNFL] thickness; 0.869; P=0.002) and SLP (nerve fiber indicator [NFI]; 0.875; P=0.002) had higher AUC than that in CSLO (vertical cup/disc ratio; 0.720).

Conclusions

Three instruments were useful in identifying GS and EG eyes. For glaucomatous eyes with or without early visual field defects, SLP and OCT performed similarly or had better discriminating abilities compared with CSLO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altman DG (1991) Practical statistics for medical research. Chapman and Hall, New York, pp 397–425

    Google Scholar 

  2. Caprioli J, Park HJ, Ugurlu S, Hoffman D (1998) Slope of the peripapillary nerve fiber layer surface in glaucoma. Invest Ophthalmol Vis Sci 39:2321–2328

    PubMed  CAS  Google Scholar 

  3. Cioffi GA, Robin AL, Eastman RD et al (1993) Confocal laser scanning ophthalmoscope. Reproducibility of optic nerve head topographic measurements with the confocal laser scanning ophthalmoscope. Ophthalmology 100:57–62

    PubMed  CAS  Google Scholar 

  4. Colen TP, Tang NE, Mulder PG, Lemij HG (2004) Sensitivity and specificity of new GDx parameters. J Glaucoma 13:28–33

    Article  PubMed  Google Scholar 

  5. Greaney MJ, Hoffman DC, Garway-Heath DF, Nakla M, Coleman AL, Caprioli J (2002) Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. Invest Ophthalmol Vis Sci 43:140–145

    PubMed  Google Scholar 

  6. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    PubMed  CAS  Google Scholar 

  7. Hee MR, Izatt JA, Swanson EA et al (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113:325–332

    PubMed  CAS  Google Scholar 

  8. Hermann MM, Theofylaktopoulos I, Bangard N et al (2004) Optic nerve head morphometry in healthy adults using confocal laser scanning tomography. Br J Ophthalmol 88:761–765

    Article  PubMed  CAS  Google Scholar 

  9. Hoh ST, Ishikawa H, Greenfield DS, Liebmann JM, Chew SJ, Ritch R (1998) Peripapillary nerve fiber layer thickness measurement reproducibility using scanning laser polarimetry. J Glaucoma 7:12–15

    Article  PubMed  CAS  Google Scholar 

  10. Iester M, Broadway DC, Mikelberg FS, Drance SM (1997) A comparison of healthy, ocular hypertensive, and glaucomatous optic disc topographic parameters. J Glaucoma 6:363–370

    PubMed  CAS  Google Scholar 

  11. Iester M, Mikelberg FS, Drance SM (1997) The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph. Ophthalmology 104:545–548

    PubMed  CAS  Google Scholar 

  12. Jonas JB, Schmidt AM, Muller-Bergh JA, Schlotzer-Schrehardt UM, Naumann GO (1992) Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 33:2012–2018

    PubMed  CAS  Google Scholar 

  13. Kanamori A, Escano MF, Eno A et al (2003) Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. Ophthalmologica 217:273–278

    Article  PubMed  Google Scholar 

  14. Kanamori A, Nakamura M, Escano MF, Seya R, Maeda H, Negi A (2003) Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol 135:513–520

    Article  PubMed  Google Scholar 

  15. Medeiros FA, Zangwill LM, Bowd C, Weinreb RN (2004) Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 122:827–837

    Article  PubMed  Google Scholar 

  16. Mistlberger A, Liebmann JM, Greenfield DS et al (2002) Assessment of optic disc anatomy and nerve fiber layer thickness in ocular hypertensive subjects with normal short-wavelength automated perimetry. Ophthalmology 109:1362–1366

    Article  PubMed  Google Scholar 

  17. Nouri-Mahdavi K, Hoffman D, Tannenbaum DP, Law SK, Caprioli J (2004) Identifying early glaucoma with optical coherence tomography. Am J Ophthalmol 137:228–235

    Article  PubMed  Google Scholar 

  18. Parisi V, Manni G, Centofanti M, Gandolfi SA, Olzi D, Bucci MG (2001) Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients. Ophthalmology 108:905–912

    Article  PubMed  CAS  Google Scholar 

  19. Poinoosawmy D, Fontana L, Wu JX et al (1997) Variation of nerve fiber layer thickness measurements with age and ethnicity by scanning laser polarimetry. Br J Ophthalmol 81:350–354

    Article  PubMed  CAS  Google Scholar 

  20. Quigley HA, Addicks EM (1982) Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol 100:807–814

    PubMed  CAS  Google Scholar 

  21. Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464

    PubMed  CAS  Google Scholar 

  22. Quigley HA, Brown AE, Morrison JD, Drance SM (1990) The size and shape of the optic disc in normal human eyes. Arch Ophthalmol 108:51–57

    PubMed  CAS  Google Scholar 

  23. Radius RL, Anderson DR (1979) The histology of retinal nerve fiber layer bundles and bundle defects. Arch Ophthalmol 97:948–950

    PubMed  CAS  Google Scholar 

  24. Schuman JS, Pedut-Kloizman T, Hertzmark E et al (1996) Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103:1889–1898

    PubMed  CAS  Google Scholar 

  25. Shimizu N, Nomura H, Ando F et al (2003) Refractive errors and factors associated with myopia in an adult Japanese population. Jpn J Ophthalmol 47:6–12

    Article  PubMed  Google Scholar 

  26. Sommer A, Miller NR, Pollack I, Maumenee AE, George T (1997) The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol 95:2149–2156

    Google Scholar 

  27. Yamazaki Y, Yoshikawa K, Kunimatsu S et al (1999) Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph. Jpn J Ophthalmol 43:392–397

    Article  PubMed  CAS  Google Scholar 

  28. Wollstein G, Garway-Heath DF, Fontana L, Hitchings RA (2000) Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology 107:2272–2277

    Article  PubMed  CAS  Google Scholar 

  29. Zangwill LM, Bowd C, Berry CC et al (2001) Discriminating between normal and glaucomatous eyes using the Heidelberg Retina Tomograph, GDx Nerve Fiber Analyzer, and Optical Coherence Tomograph. Arch Ophthalmol 119:985–993

    PubMed  CAS  Google Scholar 

  30. Zeyen TG, Caprioli J (1993) Progression of disc and field damage in early glaucoma. Arch Ophthalmol 111:62–65

    PubMed  CAS  Google Scholar 

  31. Zhou Q, Weinreb RN (2002) Individualized compensation of anterior segment birefringence during scanning laser polarimetry. Invest Ophthalmol Vis Sci 43:2221–2228

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyasu Kanamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanamori, A., Nagai-Kusuhara, A., Escaño, M.F.T. et al. Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage. Graefe's Arch Clin Exp Ophthalmo 244, 58–68 (2006). https://doi.org/10.1007/s00417-005-0029-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-005-0029-0

Keywords

Navigation