Skip to main content

Advertisement

Log in

Regional differences in oxygen saturation in retinal arterioles and venules

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Retinal vessel oxygenation saturation measurements have been the focus of much attention in recent years as a potential diagnostic parameter in a number of ocular and systemic pathologies. This interest has been heightened by the ability to measure oxygen saturation in vivo using a photographic technique.

Methods

Retinal vessel oxygenation in venules and arterioles of 279 retinal vessels of 12 healthy Caucasian participants (mean age: 30 SD (+/− 6) years) were measured consecutively three times to evaluate short-term variation in oxygen saturation and regional variability of retinal vessel oxygen saturation using dual-wavelength technology (Oxymetry Modul, Imedos, Germany). All subjects underwent standard optometric assessment including non-contact intra-ocular pressure assessment as well as having their systemic blood pressure measured.

Results

Vessels were grouped as either near-macula or peripheral, depending on their location. Peripheral arterioles and venules exhibited significantly lower oxygen saturation compared to their near-macula counterparts (arterioles: 94.7% (SD 3.9) vs. 99.7% (SD 3.2); venules: 65.1% (SD 7.2) vs. 90.3% (SD 6.7)). Both arterioles and venules, main branches, and those feeding and draining the retina near the macula and periphery showed low short-term variability of oxygen saturation (arterioles: COV 1.2–1.8%; venules: COV 2.9–4.9%).

Conclusions

Retinal arterioles and venules exhibit low short-term variation of oxygen saturation in healthy subjects. Regional differences in oxygen saturation could be a potential useful marker for risk stratification and diagnostic purposes of area-specific retinal pathology such as age-related macula degeneration and diabetic maculopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arimoto H, Furukawa H (2007) Retinal blood oxygen saturation mapping by multispectral imaging and morphological angiography. Conf Proc IEEE Eng Med Biol Soc 2007:1627–30

    PubMed  Google Scholar 

  2. Crittin M, Schmidt H, Riva CE (2002) Hemoglobin oxygen saturation (So2) in the human ocular fundus measured by reflectance oximetry: preliminary data in retinal veins. Klin Monbl Augenheilkd 219(4):289–91

    Article  PubMed  Google Scholar 

  3. Izhaky D, Nelson DA, Burgansky-Eliash Z, Grinvald A (2009) Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals. Jpn J Ophthalmol 53(4):345–51

    Article  PubMed  Google Scholar 

  4. Beach JM, Schwenzer KJ, Srinivas S, Kim D, Tiedeman JS (1999) Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation. J Appl Physiol 86(2):748–58

    PubMed  CAS  Google Scholar 

  5. Hammer M, Vilser W, Riemer T, Schweitzer D (2008) Retinal vessel oximetry-calibration, compensation for vessel diameter and fundus pigmentation, and reproducibility. J Biomed Opt 13(5):054015

    Article  PubMed  Google Scholar 

  6. Blondal R, Sturludottir MK, Hardarson SH, Halldorsson GH, Stefánsson E (2011) Reliability of vessel diameter measurements with a retinal oximeter. Graefes Arch Clin Exp Ophthalmol 249(9):1311–7

    Article  PubMed  Google Scholar 

  7. Tiedeman JS, Kirk SE, Srinivas S, Beach JM (1998) Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy. Ophthalmology 105(1):31–6

    Article  PubMed  CAS  Google Scholar 

  8. Hammer M, Vilser W, Riemer T, Mandecka A, Schweitzer D, Kühn U, Dawczynski J, Liemt F, Strobel J (2009) Diabetic patients with retinopathy show increased retinal venous oxygen saturation. Graefes Arch Clin Exp Ophthalmol 247(8):1025–30

    Article  PubMed  Google Scholar 

  9. Trick GL, Edwards P, Desai U, Berkowitz BA (2006) Early supernormal retinal oxygenation response in patients with diabetes. Invest Ophthalmol Vis Sci 47(4):1612–9

    Article  PubMed  Google Scholar 

  10. Michelson G, Scibor M (2006) Intravascular oxygen saturation in retinal vessels in normal subjects and open-angle glaucoma subjects. Acta Ophthalmol Scand 84(3):289–95

    Article  PubMed  Google Scholar 

  11. Ito M, Murayama K, Deguchi T, Takasu M, Gil T, Araie M, Peyman G, Yoneya S (2008) Oxygen saturation levels in the juxta-papillary retina in eyes with glaucoma. Exp Eye Res 86(3):512–8

    Article  PubMed  CAS  Google Scholar 

  12. Traustason S, Jensen AS, Arvidsson HS, Munch IC, Søndergaard L, Larsen M (2011) Retinal oxygen saturation in patients with systemic hypoxemia. Invest Ophthalmol Vis Sci 52(8):5064–7, 7

    Article  PubMed  Google Scholar 

  13. Zhang W, Ito Y, Berlin E, Roberts R, Berkowitz BA (2003) Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 44(7):3119–23

    Article  PubMed  Google Scholar 

  14. Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 206(4):319–48

    Article  PubMed  Google Scholar 

  15. Wong TY, Klein R, Klein BE, Tielsch JM, Hubbard L, Nieto FJ (2001) Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv Ophthalmol 46(1):59–80

    Article  PubMed  CAS  Google Scholar 

  16. Braun RD, Linsenmeier RA, Goldstick TK (1995) Oxygen consumption in the inner and outer retina of the cat. Invest Ophthalmol Vis Sci 36(3):542–54

    PubMed  CAS  Google Scholar 

  17. Fliesler SJ, Richards MJ, Miller CY, Mckay S, Winkler BS (1997) In vitro metabolic competence of the frog retina: effects of glucose and oxygen deprivation. Exp Eye Res 64(5):683–92

    Article  PubMed  CAS  Google Scholar 

  18. Haugh-Scheidt LM, Griff ER, Linsenmeier RA (1995) Light-evoked oxygen responses in the isolated toad retina. Exp Eye Res 61(1):73–81

    Article  PubMed  CAS  Google Scholar 

  19. Linsenmeier RA, Braun RD (1992) Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J Gen Physiol 99(2):177–97

    Article  PubMed  CAS  Google Scholar 

  20. Medrano CJ, Fox DA (1995) Oxygen consumption in the rat outer and inner retina: light- and pharmacologically induced inhibition. Exp Eye Res 61(3):273–84

    Article  PubMed  CAS  Google Scholar 

  21. Birol G, Wang S, Budzynski E, Wangsa-Wirawan ND, Linsenmeier RA (2007) Oxygen distribution and consumption in the macaque retina. Am J Physiol Heart Circ Physiol 293(3):H1696–704

    Article  PubMed  CAS  Google Scholar 

  22. Hardarson SH, Basit S, Jonsdottir TE, Eysteinsson T, Halldorsson GH, Karlsson RA, Beach JM, Benediktsson JA, Stefansson E (2009) Oxygen saturation in human retinal vessels is higher in dark than in light. Invest Ophthalmol Vis Sci 50(5):2308–11

    Article  PubMed  Google Scholar 

  23. Liu D, Wood NB, Witt N, Hughes AD, Thom SA, Xu XY (2009) Computational analysis of oxygen transport in the retinal arterial network. Curr Eye Res 34(11):945–56

    Article  PubMed  Google Scholar 

  24. Hoang QV, Linsenmeier RA, Chung CK, Curcio CA (2002) Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation. Vis Neurosci 19:395–407

    Article  PubMed  CAS  Google Scholar 

  25. Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121(4):547–557

    Article  PubMed  Google Scholar 

  26. Silveira LC, Perry VH, Yamada ES (1993) The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, Aotus trivirgatus. Vis Neurosci 10(5):887–97

    Article  PubMed  CAS  Google Scholar 

  27. Herbin M, Boire D, Ptito M (1997) Size and distribution of retinal ganglion cells in the St. Kitts green monkey (Cercopithecus aethiops sabeus). J Comp Neurol. 14;383(4):459–72

    Google Scholar 

  28. Skov Jensen P, Jeppesen P, Bek T (2011) Differential diameter responses in macular and peripheral retinal arterioles may contribute to the regional distribution of diabetic retinopathy lesions. Graefes Arch Clin Exp Ophthalmol 249(3):407–12

    Article  PubMed  Google Scholar 

  29. Lockhart CJ, Hamilton PK, Quinn CE, McVeigh GE (2009) End-organ dysfunction and cardiovascular outcomes: the role of the microcirculation. Clin Sci (Lond) 116(3):175–90

    Article  Google Scholar 

  30. DellaCroce JT, Vitale AT (2008) Hypertension and the eye. Curr Opin Ophthalmol 19(6):493–8

    Article  PubMed  Google Scholar 

  31. Dirani M, McAuley AK, Maple-Brown L, Kawasaki R, McIntosh RL, Harper CA, Lamoureux EL, Tatipata S, Dunbar T, O’Dea K, Cunningham J (2010) Association of retinal vessel calibre with diabetic retinopathy in an urban Australian indigenous population. Clin Experiment Ophthalmol 38(6):577–82

    Article  PubMed  Google Scholar 

  32. Kawasaki R, Cheung N, Wang JJ, Klein R, Klein BE, Cotch MF, Sharrett AR, Shea S, Islam FA, Wong TY (2009) Retinal vessel diameters and risk of hypertension: the Multiethnic Study of Atherosclerosis. J Hypertens 27(12):2386–93

    Article  PubMed  CAS  Google Scholar 

  33. Tsui I, Shamsa K, Perloff JK, Lee E, Wirthlin RS, Schwartz SD (2009) Retinal vascular patterns in adults with cyanotic congenital heart disease. Semin Ophthalmol 24(6):262–5

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Summer Scholarship of The College of Optometrists.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebekka Heitmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heitmar, R., Safeen, S. Regional differences in oxygen saturation in retinal arterioles and venules. Graefes Arch Clin Exp Ophthalmol 250, 1429–1434 (2012). https://doi.org/10.1007/s00417-012-1980-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-1980-1

Keywords

Navigation