Skip to main content
Log in

Traumatology of the optic nerve and contribution of crystallins to axonal regeneration

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Within a few decades, the repair of long neuronal pathways such as spinal cord tracts, the optic nerve or intracerebral tracts has gone from being strongly contested to being recognized as a potential clinical challenge. Cut axonal stumps within the optic nerve were originally thought to retract and become irreversibly necrotic within the injury zone. Optic nerve astrocytes were assumed to form a gliotic scar and remodelling of the extracellular matrix to result in a forbidden environment for re-growth of axons. Retrograde signals to the ganglion cell bodies were considered to prevent anabolism, thus also initiating apoptotic death and gliotic repair within the retina. However, increasing evidence suggests the reversibility of these regressive processes, as shown by the analysis of molecular events at the site of injury and within ganglion cells. We review optic nerve repair from the perspective of the proximal axon stump being a major player in determining the successful formation of a growth cone. The axonal stump and consequently the prospective growth cone, communicates with astrocytes, microglial cells and the extracellular matrix via a panoply of molecular tools. We initally highlight these aspects on the basis of recent data from numerous laboratories. Then, we examine the mechanisms by which an injury-induced growth cone can sense its surroundings within the area distal to the injury. Based on requirements for successful axonal elongation within the optic nerve, we explore the models employed to instigate successful growth cone formation by ganglion cell stimulation and optic nerve remodelling, which in turn accelerate growth. Ultimately, with regard to the proteomics of regenerating retinal tissue, we discuss the discovery of isoforms of crystallins, with crystallin beta-b2 (crybb2) being clearly upregulated in the regenerating retina. Crystallins are produced and used to promote the elongation of growth cones. In vivo and in vitro, crystallins beta and gamma additionally promote the growth of axons by enhancing the production of ciliary neurotrophic factor (CNTF), indicating that they also act on astrocytes to promote axonal regrowth synergistically. These are the first data showing that axonal regeneration is related to crybb2 movement within neurons and to additional stimulation of CNTF. We demonstrate that neuronal crystallins constitute a novel class of neurite-promoting factors that probably operate through an autocrine and paracrine mechanism and that they can be used in neurodegenerative diseases. Thus, the post-injury fate of neurons cannot be seen merely as inevitable but, instead, must be regarded as a challenge to shape conditions for initiating growth cone formation to repair the damaged optic nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acheson JF (2004) Optic nerve disorders: role of canal and nerve sheath decompression surgery. Eye 18:1169–1174

    PubMed  CAS  Google Scholar 

  • Akbik F, Cafferty WB, Strittmatter SM (2011) Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp Neurol 235:43–52

    Google Scholar 

  • Alur RP, Cox TA, Crawford MA, Gong X, Brooks BP (2008) Optic nerve axon number in mouse is regulated by PAX2. JAAPOS 12:117–121

    Google Scholar 

  • Atkinson-Leadbeater K, Bertolesi GE, Hehr CL, Webber CA, Cechmanek PB, McFarlane S (2010) Dynamic expression of axon guidance cues required for optic tract development is controlled by fibroblast growth factor signaling. J Neurosci 30:685–693

    PubMed  CAS  Google Scholar 

  • Bähr M, Vanselow J, Thaos S (1988) In vitro regeneration of adult rat ganglion cell axons from retinal explants. Exp Brain Res 73:393–401

    PubMed  Google Scholar 

  • Bähr M, Hopkins JM, Bunge RP (1991) In vitro myelination of regenerating adult rat retinal ganglion cell axons by Schwann cells. Glia 4:529–533

    PubMed  Google Scholar 

  • Barres BA, Silverstein BE, Corey DP, Chun LL (1988) Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1:791–803

    PubMed  CAS  Google Scholar 

  • Barron KD, Dentinger MP, Krohel G, Easton SK, Mankes R (1986) Qualitative and quantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush. J Neuroscytol 15:345–362

    CAS  Google Scholar 

  • Benowitz LI, Yin Y (2007) Combinatorial treatments for promoting axon regeneration in the CNS: Strategies for overcoming inhibitory signals and activating neurons’intrinsic growth state. Dev Neurobiol 67:1148–65

    PubMed  CAS  Google Scholar 

  • Berry M, Rees L, Hall S, Yiu P, Sievers J (1988) Optic axons regenerate into sciatic nerve isografts only in the presence of Schwann cells. Brain Res Bull 20:223–231

    PubMed  CAS  Google Scholar 

  • Berry M, Ahmed Z, Douglas MR, Logan A (2011) Epidermal growth factor receptor antagonists and CNS axon regeneration: mechanisms and controversies. Brain Res Bull 84:289–299

    PubMed  CAS  Google Scholar 

  • Bertrand J, Winton MJ, Rodriguez-Hernandez N, Campenot RB, McKerracher L (2005) Application of Rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats. J Neurosci 25:1113–1121

    PubMed  CAS  Google Scholar 

  • Bertrand J, Di Polo A, McKerracher L (2007) Enhanced survival and regeneration of axotomized retinal neurons by repeated delivery of cell-permeable C3-like Rho antagonists. Neurobiol Dis 25:65–72

    PubMed  CAS  Google Scholar 

  • Bjartmar C, Battistuta J, Terada N, Dupree E, Trapp BD (2002) N-acetylaspartate is an axon-specific marker of mature white matter in vivo: a biochemical and immunohistochemical study on the rat optic nerve. Ann Neurol 51:51–58

    PubMed  CAS  Google Scholar 

  • Böcker-Meffert S, Rosenstiel P, Röhl C, Warneke N, Held-Feindt J, Sievers J, Lucius R (2002) Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Ophthalmol Vis Sci 43:2021–2026

    PubMed  Google Scholar 

  • Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–127

    PubMed  CAS  Google Scholar 

  • Campbell G, Kitching J, Anderson PN, Lieberman AR (2003) Different effect of astrocytes and Schwann cells on regenerating retinal axons. Neuroreport 14:2085–2088

    PubMed  Google Scholar 

  • Carter DA, Bray GM, Aguayo AJ (1989) Regenerated retinal ganglion cell axons can form well-differentiated synapses in the superior colliculus of adult hamsters. J Neurosci 9:4042–4050

    PubMed  CAS  Google Scholar 

  • Cen LP, Luo JM, Zhang CW, Fan YM, Song Y, So KF et al (2007) Chemotactic effect of ciliary neurotrophic factor on macrophages in retinal ganglion cell survival and axonal regeneration. Invest Ophthalmol Vis Sci 48:4257–66

    PubMed  Google Scholar 

  • Chen L, Holland GN, Yu F, Levinson RD, Lampi KJ, Horwitz J, Gordon LK (2008) Associations of seroreactivity against crystalline proteins with disease activity and cataract in patients with uveitis. Invest Ophthalmol Vis Sci 49:4476–4481

    PubMed  Google Scholar 

  • Chen MS, Huber AB, Haar ME van der, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403:434–439

    PubMed  CAS  Google Scholar 

  • Chierzi S, Ratto GM, Verma P, Fawcett JW (2005) The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK. Eur J Neurosci 21:2051–2062

    PubMed  Google Scholar 

  • Cho KS, Yang L, Lu B, Feng Ma H, Huang X, Pekny M, Chen DF (2005) Re-establishing the regenerative potential of central nervous system axons in postnatal mice. J Cell Sci 118:863–872

    PubMed  CAS  Google Scholar 

  • Cohen J, Burne JF, Winter J, Bartlett P (1986) Retinal ganglion cells lose response to laminin with maturation. Nature 322:465–467

    PubMed  CAS  Google Scholar 

  • Cragg BG (1970) What is the signal for chromatolysis? Brain Res 23:1–21

    PubMed  CAS  Google Scholar 

  • Dallimore EJ, Cui Q, Beazley LD, Harvey AR (2002) Postnatal innervation of the rat superior colliculus by axons of late-born retinal ganglion cells. Eur J Neuosci 16:1295–1304

    Google Scholar 

  • Drenhaus U, Von Gunten A, Rager G (1997) Classes of axons and their distribution in the optic nerve of the tree shrew (Tupaia belangeri). Anat Rec 249:103–116

    PubMed  CAS  Google Scholar 

  • Evans AL, Gage PJ (2005) Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Hum Mol Genet 14:3347–3359

    PubMed  CAS  Google Scholar 

  • Filbin MT (2006) How inflammation promotes regeneration. Nat Neurosci 9:715–717

    PubMed  CAS  Google Scholar 

  • Fischer D, Pavlidis M, Thanos S (2000) Cataractogenic lens injury prevents traumatic ganglion cell death and promotes axonal regeneration both in vivo and in culture. Invest Ophthalmol Vis Sci 41:3943–3954

    PubMed  CAS  Google Scholar 

  • Fischer D, Heiduschka P, Thanos S (2001) Lens-injury stimulated axonal regeneration throughout the optic pathway of adult rats. Exp Neurol 172:257–272

    PubMed  CAS  Google Scholar 

  • Fischer D, Petkova V, Thanos S, Benowitz LI (2004) Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J Neurosci 24:8726–40

    PubMed  CAS  Google Scholar 

  • Fischer D, Hauk T, Müller A, Thanos S (2008) Crystallins of the beta/gamma-superfamily mimic the effects of lens injury and promote axon regeneration. Mol Cell Neurosci 37:471–479

    PubMed  CAS  Google Scholar 

  • Fitzgibbon T, Taylor SF (1996) Retinotopy of the human retinal nerve fibre layer and optic nerve head. J Comp Neurol 375:238–251

    PubMed  CAS  Google Scholar 

  • Fujita Y, Endo S, Takai T, Yamashita T (2011) Myelin suppresses axon regeneration by PIR-B/SHP-mediated inhibition of TrK activity. EMBO J 30:1389–1401

    PubMed  CAS  Google Scholar 

  • Galindo-Romero C, Avilés-Trigueros M, Jiménez-López M, Valiente-Soriano FJ, Salinas-Navarro M, Nadal-Nicolás F, Villegas-Pérez MP, Vidal-Sanz M, Agudo-Barriuso M (2011) Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Exp Eye Res 92:377–387

    PubMed  CAS  Google Scholar 

  • Ganguly K, Favor J, Neuhäuser-Klaus A, Sandulache R, Puk O, Beckers J, Horsch M, Schädler S, Vogt WD, Wurst W, Graw J (2008) Novel allele of crybb2 in the mouse and its expression in the brain. Invest Ophthalmol Vis Sci 49:1533–1541

    PubMed  Google Scholar 

  • García M, Forster V, Hicks D, Vecino E (2002) Effects of müller glia on cell survival and neuritogenesis in adult porcine retina in vitro. Invest Ophthalmol Vis Sci 43:3735–3743

    PubMed  Google Scholar 

  • García M, Forster V, Hicks D, Vecino E (2003) In vivo expression of neurotrophins and neurotrophin receptors is conserved in adult porcine retina in vitro. Invest Ophthalmol Vis Sci 44:4532–4541

    PubMed  Google Scholar 

  • Goldberg JL, Barres BA (1998) Neuronal regeneration: extending axons from bench to brain. Curr Biol 8:310–312

    Google Scholar 

  • Goldberg JL, Espinosa JS, Xu Y, Davidson N, Novacs GT, Barres BA (2002a) Retinal gangion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33:689–702

    PubMed  CAS  Google Scholar 

  • Goldberg JL, Klassen MP, Hua Y, Barres BA (2002b) Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296:1819–1820

    Google Scholar 

  • Graw J (2009) Genetics of crystallins: cataract and beyond. Exp Eye Res 88:173–189

    PubMed  CAS  Google Scholar 

  • Hauk TG, Muller A, Lee J, Schwendener R, Fischer D (2008) Neuroprotective and axon growth promoting effects of intraocular inflammation do not depend on oncomodulin or the presence of large numbers of activated macrophages. Exp Neurol 209:469–482

    PubMed  CAS  Google Scholar 

  • Heiduschka P, Fischer D, Thanos S (2005) Recovery of visual evoked potentials after regeneration of cut retinal ganglion cell axons within the ascending visual pathway in adult rats. Restor Neurol Neurosci 23:303–312

    PubMed  Google Scholar 

  • Herrera E, Garcia-Frigola (2008) Genetics and development of the optic chiasm. Front Biosci 13:1646–1653

    PubMed  CAS  Google Scholar 

  • Honjin R, Sakato S, Yamashita T (1977) Electron microscopy of the mouse optic nerve: a quantitative study of the total optic nerve fibers. Arch Histol Jpn 40:321–332

    PubMed  CAS  Google Scholar 

  • Hurlbert RJ (2006) Strategies of medical intervention in the management of acute spinal cord injury. Spine 31:S16–S21

    PubMed  Google Scholar 

  • Isenmann S, Kretz A, Cellerino A (2003) Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog Ret Eye Res 22:483–543

    CAS  Google Scholar 

  • Ivanov D, Dvoriantchikova G, Nathanson L, McKinnon SJ, Vi S (2006) Microarray analysis of gene expression in adult retinal ganglion cells. FEBS Lett 580:331–335

    PubMed  CAS  Google Scholar 

  • James G, Butt AM (2001) Changes in P2Y and P2X purinoceptors in reactive glia following axonal degeneration in the rat optic nerve. Neurosci Lett 312:33–36

    PubMed  CAS  Google Scholar 

  • Jo SA, Wang E, Benowitz LI (1999) Ciliary neurotrophic factor is an axogenesis factor for retinal ganglion cells. Neuroscience 89:579–591

    PubMed  CAS  Google Scholar 

  • Johnson AR, Wigley CB, Gregson NA, Cohen J, Berry M (1988) Neither laminin nor prior optic nerve section are essential for the regeneration of adult mammalian retinal ganglion cell axons in vitro. J Neurocytol 17:95–104

    PubMed  CAS  Google Scholar 

  • Johnson AR, Gregson NA, Wigley CB, Berry M (1989) The conditioning effect of optic nerve injury upon axonal regrowth from adult rat retinal ganglion cells explanted in vitro. Neurosci Lett 97:63–68

    PubMed  CAS  Google Scholar 

  • Kapfhammer J, Raper JA (1987) Interactions between growth cones and neurites growing from different neural tissues in culture. J Neurosci 7:1595–1600

    PubMed  CAS  Google Scholar 

  • King C, Barlett C, Sauve Y, Lund R, Dunlop S, Beazley L (2006) Retinal ganglion cell axons regenerate in the presence of intact sensory fibres. Neuroreport 17:195–199

    PubMed  Google Scholar 

  • Kupfer C (1963) Retinal ganglion cell degeneration following chiasmal lesions in man. Arch Ophthalmol 70:256–260

    PubMed  CAS  Google Scholar 

  • Kurimoto T, Yin Y, Omura K, Gilbert HY, Kim D, Cen LP, Moko L, Kügler S, Benowitz LI (2010) Long distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci 30:15654–15663

    PubMed  CAS  Google Scholar 

  • Landreth GE, Agranoff BW (1979) Explant culture of adult goldfish retina: a model for the study of CNS regenerations. Brain Res 161:39–55

    PubMed  CAS  Google Scholar 

  • Lasseck J, Schröer U, Koenig S, Thanos S (2007) Regeneration of retinal ganglion cell axons in organ culture is increased in rats with hereditary buphthalmos. Exp Eye Res 85:90–104

    PubMed  CAS  Google Scholar 

  • Lavie V, Murray M, Solomon A, Ben-Bassat S, Belkin M, Rumlet S, Schwartz M (1990) Growth of injured rabbit optic axons within their degenerating optic nerve. J Comp Neurol 298:293–314

    PubMed  CAS  Google Scholar 

  • Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S, Verhaagen J, Harvey AR (2006a) AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther 13:1328–1341

    PubMed  CAS  Google Scholar 

  • Leaver SG, Harvey AR, Plant GW (2006b) Adult olfactory ensheathing glia promote the long-distance growth of adult retinal ganglion cell neuritis in vitro. Glia 53:467–476

    PubMed  CAS  Google Scholar 

  • Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci 20:4615–26

    PubMed  CAS  Google Scholar 

  • Leoz Ortín GL, Arcaute LR (1914) Processos regenerativos del nervio óptico y retina con ocasíon de injertos nerviosos. Trab Lab Invest Biol Madrid 11:239–254

    Google Scholar 

  • Leung DY, Kwong YY, Lam DS (2006) The outcome of 48 eyes with indirect traumatic optic neuropathy and periorbital facial bone fracture. J Trauma 60:685

    PubMed  Google Scholar 

  • Levin LA, Beck RW, Joseph MP, Seiff S, Kraker R (1999) The treatment of traumatic optic neuropathy: the International Optic Nerve Trauma Study. Ophthalmology 106:1268–1277

    PubMed  CAS  Google Scholar 

  • Li Y, Li D, Raisman G (2007) Transplanted Schwann cells, not olfactory ensheathing cells, myelinate optic nerve fibres. Glia 55:312–316

    PubMed  Google Scholar 

  • Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124

    PubMed  CAS  Google Scholar 

  • Liedtke T, Naskar R, Eisenacher M, Thanos S (2007a) Transformation of adult retina from the regenerative to the axonogenesis state activates specific genes in various subsets of neurons and glial cells. Glia 55:189–201

    PubMed  Google Scholar 

  • Liedtke T, Schwamborn JC, Schröer U, Thanos S (2007b) Elongation of axons during regeneration involves retinal crystallin beta b2 (crybb2). Mol Cell Proteomics 6:895–907

    PubMed  CAS  Google Scholar 

  • Lingor P, Tönges I, Pieper N, Bermel C, Barski E, Planchamp V, Bähr M (2008) ROCK inhibition and CNTF interact on intrinsic signaling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain 131:250–263

    PubMed  Google Scholar 

  • Lodovichi C, Di Cristo G, Cenni MC, Maffei L (2001) Bcl-2 overexpression per se does not promote regeneration of neonatal crushed optic fibers. Eur J Neurosci 13:833–838

    PubMed  CAS  Google Scholar 

  • Lorber B, Berry M, Logan A, Tonge D (2002) Effect of lens lesion on neurite outgrowth of retinal ganglion cells in vitro. Mol Cell Neurosci 21:301–11

    PubMed  CAS  Google Scholar 

  • Lorber B, Berry M, Logan A (2008) Different factors promote axonal regeneration of adult rat retinal ganglion cells after lens injury and intravitreal peripheral nerve grafting. J Neurosci Res 86:894–903

    PubMed  CAS  Google Scholar 

  • Manthorpe M, Engvall E, Ruoslahti E, Longo FM, Davis GE, Varon S (1983) Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J Cell Biol 97:1882–1890

    PubMed  CAS  Google Scholar 

  • Marler KJ, Becker-Barroso E, Martínez A, Llovera M, Wentzel C, Poopalasundaram S, Hindges R, Soriano E, Comella J, Drescher U (2008) A TrkB/EphrinA interaction controls retinal axon branching and synaptogenesis. J Neurosci 28:12700–12712

    PubMed  CAS  Google Scholar 

  • McDonald R, Wilson SW (1996) Pax proteins and eye development. Curr Opin Neurobiol 6:49–56

    Google Scholar 

  • Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602:304–317

    PubMed  CAS  Google Scholar 

  • Meyer-Franke A, Wilkinson GA, Kruttgen A, Hu M, Munro E, Hanson MG Jr, Reichardt LF, Barres BA (1988) Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21:681–693

    Google Scholar 

  • Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995) Characterization of the signalling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805–819

    PubMed  CAS  Google Scholar 

  • Moore DL, Blackmore MG, Hu Y, Kaestner KH, Bixby JL, Lemmon VP, Goldberg JL (2009) KLF family members regulate intrinsic axon regeneration ability. Science 326:298–301

    PubMed  CAS  Google Scholar 

  • Moore S, Thanos S (1996) Differential increases in rat retinal ganglion cell size with various methods of optic nerve lesion. Neurosci Lett 207:117–120

    PubMed  CAS  Google Scholar 

  • Morissette N, Carbonetto S (1995) Laminin alpha 2 chain (M-chain) is found within the pathway of avian and murine retinal projections. J Neurosci 15:8067–8082

    PubMed  CAS  Google Scholar 

  • Müller A, Hauk TG, Fischer D (2007) Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation. Brain 130:3308–3320

    PubMed  Google Scholar 

  • Nag TC, Wadhwa S (1999) Neurotrophin receptors (Trk A, Trk B, and Trk C) in the developing and adult human retina. Brain Res Dev Brain Res 117:179–189

    PubMed  CAS  Google Scholar 

  • Navascuès J, Martin-Partido G, Alvàrez LS, Rodriguez-Gallardo G-M (1987) Gliobast migration in the optic stalk of the chick embryo. Anat Embryol 176:79–85

    PubMed  Google Scholar 

  • Neveu MM, Jeffery G (2007) Chiasm formation in man is fundamentally different from that in the mouse. Eye 21:1264–1270

    PubMed  CAS  Google Scholar 

  • Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215

    PubMed  CAS  Google Scholar 

  • O’Leary DDM, Wilkinson DG (1999) Ephrin receptors and ephrins in neural development. Curr Opin Neurobiol 9:65–73

    PubMed  Google Scholar 

  • Park K, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOr pathway. Science 322:963–966

    PubMed  CAS  Google Scholar 

  • Pernet V, Di Polo A (2006) Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. Brain 129:1014–1026

    PubMed  Google Scholar 

  • Pernet V, Hauswirth WW, Di Polo A (2005) Extracellular signal-regulated kinase 1/2 mediates survival, but not axon regeneration, of adult injured central nervous system neurons in vivo. J Neurochem 93:72–83

    PubMed  CAS  Google Scholar 

  • Prokosch V, Spieker T, Merte RL, Thanos S (2011) Concomitant cellular reactions in optic nerve siderosis existing for 30 years. Opthalmologe 108:372–377

    CAS  Google Scholar 

  • Quiqley HA, Davis EB, Anderson DR (1977) Descending optic atrophy in primates. Invest Ophthalmol Vis Sci 16:841–849

    Google Scholar 

  • Radius RL, Anderson DR (1978) Retinal ganglion cell degeneration in experimental optic atrophy. Am J Ophthalmol 86:673–679

    PubMed  CAS  Google Scholar 

  • Raibon E, Sauve Y, Carter DA, Gaillard F (2002) Microglial changes accompanying the promotion of retinal ganglion cell axonal regeneration into peripheral nerve grafts. J Neurocytol 31:57–71

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system (translation by May RM). Oxford University Press, London

    Google Scholar 

  • Rose K, Schröer U, Volk GF, Schlatt S, König S, Feigenspan A, Thanos S (2008) Axonal regeneration-specific protein expression in the maturating and adult monkey retina in organotypic culture. Restor Neurol Neurosci 26:249–266

    PubMed  CAS  Google Scholar 

  • Sadun AA, Wang MY (2011) Abnormalities of the optic disc. Handb Clin Neurol 102:117–157

    PubMed  Google Scholar 

  • Sauvé Y, Sawai H, Rasminsky M (1995) Functional synaptic connections made by regenerated retinal ganglion cell axons in the superior colliculus of adult hamsters. J Neurosci 15:665–675

    PubMed  Google Scholar 

  • Sax CM, Piatigorsky J (1994) Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues. Adv Enzymol Relat Areas Mol Biol 69:155–201

    PubMed  CAS  Google Scholar 

  • Schmid R, Wilhelm B, Wilhelm H (2000) Naso-temporal asymmetry and contraction on anisocoria in the pupillomotor system. Graefes Arch Clin Exp Ophthalmol 238:123–128

    PubMed  CAS  Google Scholar 

  • Schröer U, Volk GF, Liedtke T, Thanos S (2007) Translin-associated factor-X (Trax) is a molecular switch of growth-associated protein (GAP)-43 that controls axonal regeneration. Eur J Neurosci 26:2169–2178

    PubMed  Google Scholar 

  • Shen S, Wiemelt AP, McMorris FA, Barres BA (1999) Retinal ganglion cells lose trophic responsiveness after axotomy. Neuron 23:285–295

    PubMed  CAS  Google Scholar 

  • Sherman LS, Back SA (2007) A “GAG” reflex prevents repair of the damaged CNS. Trends Neurosci 31:44–51

    PubMed  Google Scholar 

  • Silver J (1984) Studies on the factors that govern directionality of axonsl growth in the embryonic optic nerve and at the chiasm of mice. J Comp Neurol 223:238–251

    PubMed  CAS  Google Scholar 

  • Silver J, Rutishauser U (1984) Guidance of optic axons in vivo by a performed adhesive pathway on neuroepithelial endfeed. Dev Biol 106:485–499

    PubMed  CAS  Google Scholar 

  • Sivers J, Hausmann B, Unsicker K, Berry M (1987) Fibroblast growth factors promote the survival of adult rat retinal ganglion cells after transection of the optic nerve. Neurosci Lett 76:157–162

    Google Scholar 

  • So KF, Aguayo AJ (1985) Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Res 328:349–354

    PubMed  CAS  Google Scholar 

  • Steinsapir KD, Goldberg RA, Sinha S, Hovda DA (2000) Methylprednisolone exacerbates axonal loss following optic nerve trauma in rats. Restor Neurol Neurosci 17:157–163

    PubMed  CAS  Google Scholar 

  • Stepanek L, Stoker AW, Stoeckli E, Bixby JL (2005) Receptor tyrosine phosphatases guide vertebrate motor axons during development. J Neurosci 25:3813–3823

    PubMed  CAS  Google Scholar 

  • Stevenson JA (1987) Growth of retinal ganglion cell axons following optic nerve crush in adult hamsters. Exp Neurol 97:77–89

    PubMed  CAS  Google Scholar 

  • Stupp T, Pavlidis M, Busse H, Thanos S (2005) Lens epithelium supports axonal regeneration of retinal ganglion cells in a coculture model in vitro. Exp Eye Res 81:530–538

    PubMed  CAS  Google Scholar 

  • Suetterlin P, Marler KM, Drescher U (2012) Axonal ephrinA/EphA interactions, and the emergence of order in topographic projections. Semin Cell Dev Biol 23:1–6

    PubMed  CAS  Google Scholar 

  • Swanson KI, Schlieve CR, Lieven CJ, Levin LA (2005) Neuroprotective effect of sulfhydryl reduction in a rat optic nerve crush model. Invest Ophthalmol Vis Sci 46:3737–3741

    PubMed  Google Scholar 

  • Takano M, Sango K, Horie H, Sato M, Iijima Y, Ohno S, Inoue S, Ishikawa Y (1999) Diabetes alters neuritis regeneration from mouse retinal explants in culture. Neurosci Lett 275:175–178

    PubMed  CAS  Google Scholar 

  • Tello F (1907) La regeneration dans les voies optiques. Trab Lab Invest Biol Univ Madr 5:237–248

    Google Scholar 

  • Thanos S, Mey J (1995) Type-specific stabilization and target-dependent survival of regenerating ganglion cells in the retina of adult rats. J Neurosci 15:1057–1079

    PubMed  CAS  Google Scholar 

  • Thanos S, Mey J (2001) Development of the visual system of the chick. II. Mechanisms of axonal guidance. Brain Res Rev 35:205–245

    PubMed  CAS  Google Scholar 

  • Thanos S, Pavlidis C, Mey J, Thiel HJ (1992) Specific transcellular staining of microglia in the adult rat after traumatic degeneration of carbocyanine-filled retinal ganglion cells. Exp Eye Res 55:101–117

    PubMed  CAS  Google Scholar 

  • Thanos S, Mey J, Wild M (1993) Treatment of the adult retina with microglia-suppressing factors retards axotomy-induced neuronal degradation and enhances axonal regeneration in vivo and in vitro. J Neurosci 13:455–466

    PubMed  CAS  Google Scholar 

  • Trimmer PA, Wunderlich RE (1990) Changes in astroglial scar formation in rat optic nerve as a function of development. J Comp Neurol 296:359–378

    PubMed  CAS  Google Scholar 

  • Tsai HH, Jeng SF, Lin TS, Kueh NS, Hsieh CH (2005) Predictive value of computed tomography in visual outcome in indirect traumatic optic neuropathy complicated with periorbital facial bone fracture. Clin Neurol Neurosurg 107:200–206

    PubMed  Google Scholar 

  • Ullian EM, Barkis WB, Chen S, Diamond JS, Barres BA (2004) Invulnerability of retinal gangion cells to NMDA excitotoxicity. Mol Cell Neurosci 26:544–557

    PubMed  CAS  Google Scholar 

  • Vázquez-Chona F, Song BK, Geisert EE Jr (2004) Temporal changes in gene expression after injury in the rat retina. Invest Ophthalmol Vis SCi 45:2737–2746

    PubMed  Google Scholar 

  • Vidal-Sanz M, Bray M, Villegas-Perez MP, Thanos S, Aguayo AJ (1987) Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J Neurosci 7:2894–2909

    PubMed  CAS  Google Scholar 

  • Walter J, Allsopp TE, Bohnhoffer F (1990) A common denominatior of growth cone guidance and collapse? Trends Neurosci 13:447–452

    PubMed  CAS  Google Scholar 

  • Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417:941–944

    PubMed  CAS  Google Scholar 

  • Weibel D, Cadelli D, Me S (1994) Regeneratin of lesioned rat optic nerve fibers is improved after neutralization of myelin-associated neurite growth inhibitors. Brain Res 642:259–266

    PubMed  CAS  Google Scholar 

  • Wigley CB, Berry M (1988) Regeneration of adult rat retinal ganglion cell processes in monolayer culture: comparison between cultures of adult and neonatal neurons. Brain Res 470:85–98

    PubMed  CAS  Google Scholar 

  • Winzeler AM, Mandemakers WJ, Sun MZ, Stafford M, Phillips CT, Barres BA (2011) The lipid sufatide is a novel myelin-associated inhibitor of CNS axon outgrowth. J Neurosci 31:6481–6492

    PubMed  CAS  Google Scholar 

  • Wistow G (1990) Evolution of a protein superfamily: relationships between vertebrate lens crystallins and microorganism dormancy proteins. J Mol Evol 30:140–145

    PubMed  CAS  Google Scholar 

  • Wizenmann A, Bähr M (1998) Growth preferences of adult rat retinal ganglion cell axons in retinotectal cocultures. J Neurobiol 35:379–387

    PubMed  CAS  Google Scholar 

  • Wong EV, David S, Jacob MH, Jay DG (2003) Inactivation of myelin-associated glycoprotein enhances optic nerve regeneration. J Neurosci 23:5391

    CAS  Google Scholar 

  • Wong WK, Cheung AW, Cho EY (2006) Lens epithelial cells promote regrowth of retinal ganglion cells in culture and in vivo. Neuroreport 17:699–704

    PubMed  Google Scholar 

  • Xue LP, Lu J, Cao Q, Kaur C, Ling EA (2006) Nestin expression in Müller glial cells in potnatal rat retina and its upregulation following optic nerve transection. Neuroscience 143:117–127

    PubMed  CAS  Google Scholar 

  • Yeh S, Foroozan R (2004) Orbital apex syndrome. Curr Opin Ophthalmol 15:490–498

    PubMed  Google Scholar 

  • Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, Benowitz LI (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23:2284–2293

    PubMed  CAS  Google Scholar 

  • Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9:843–852

    PubMed  CAS  Google Scholar 

  • Yin Y, Cui Q, Gilbert HY, Yang Y, Yang Z, Berlinicke C, LI Z, Zaverucha-do-Valle C, He H, Petkova V, Zack DJ, Benowitz LI (2009) Oncomodulin links inflammation to optic nerve regeneration. Proc Natl Acad Sci USA 106:19587–19592

    PubMed  CAS  Google Scholar 

  • Yu Wai Man P, Griffiths PG (2005) Surgery for traumatic optic neuropathy. Cochrane Database Syst Rev 4:CD005024

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solon Thanos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thanos, S., Böhm, M.R.R., Schallenberg, M. et al. Traumatology of the optic nerve and contribution of crystallins to axonal regeneration. Cell Tissue Res 349, 49–69 (2012). https://doi.org/10.1007/s00441-012-1442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1442-4

Keywords

Navigation