Skip to main content
Log in

Structures of the corneal limbus detected by laser-scanning confocal biomicroscopy as related to the palisades of Vogt detected by slit-lamp microscopy

  • Clinical Investigation
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To examine the relations between specific structures detected at the corneal limbus by confocal biomicroscopy with palisades of Vogt detected by slit-lamp microscopy

Methods

Twenty-five eyes of 25 normal participants were examined. The presence or absence of the palisades of Vogt and limbal pigmentation were assessed by slit-lamp microscopy. The presence or absence of four structures in the corneal limbal area—hyperreflective parallel trabecular extensions, borders of bright-cell groups and dark-cell groups, hyperreflective cells and bright corpuscular particles with dendritic cell-like morphology—were assessed by confocal biomicroscopy. The relations between the presence of these four structures and the presence of either the palisades of Vogt or limbal pigmentation of the palisade ridges were evaluated by the χ-squared test.

Results

Only the presence of hyperreflective parallel trabecular extensions was significantly related to the presence of the palisades of Vogt (P < 0.01). The presence of hyperreflective cells was not significantly related to the presence of limbal pigmentation.

Conclusion

The hyperreflective parallel trabecular extensions observed by confocal biomicroscopy may correspond to the palisades of Vogt detected by slit-lamp microscopy. Further studies are needed to determine whether confocal biomicroscopy can be used to diagnose and monitor the clinical course of limbal stem cell deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bron AJ. Vortex patterns of the corneal epithelium. Trans Ophthalmol Soc UK 1973;93:455–472.

    CAS  PubMed  Google Scholar 

  2. Goldberg MF, Bron AJ. Limbal palisades of Vogt. Trans Am Ophthalmol Soc 1982;80:155–171.

    CAS  PubMed  Google Scholar 

  3. Townsend WM. The limbal palisades of Vogt. Trans Am Ophthalmol Soc 1991;89:721–756.

    CAS  PubMed  Google Scholar 

  4. Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 1986;103:49–62.

    Article  CAS  PubMed  Google Scholar 

  5. Nishida K, Kinoshita S, Ohashi Y, Kuwayama Y, Yamamoto S. Ocular surface abnormalities in aniridia. Am J Ophthalmol 1995;120:368–375.

    CAS  PubMed  Google Scholar 

  6. Kinoshita S, Adachi W, Sotozono C, et al. Characteristics of the human ocular surface epithelium. Prog Retin Eye Res 2001;20:639–673.

    Article  CAS  PubMed  Google Scholar 

  7. Eckard A, Stave J, Guthoff RF. In vivo investigations of the corneal epithelium with the confocal Rostock laser scanning microscope (RLSM). Cornea 2006;25:127–131.

    Article  PubMed  Google Scholar 

  8. Guthoff RF, Stave J. In vivo micromorphology of the cornea: confocal microscopy principles and clinical applications. In: Reinhard T, Larkin F, editors. Essentials in ophthalmology: cornea and external eye disease. Berlin: Springer; 2006. p. 173–208.

    Chapter  Google Scholar 

  9. Patel DV, Sherwin T, McGhee CN. Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus. Invest Ophthalmol Vis Sci 2006;47:2823–2827.

    Article  PubMed  Google Scholar 

  10. Rong B, Yan XM. In vivo study of normal human limbal and central corneas using laser confocal microscope. Zhonghua Yan Ke Za Zhi 2006;42:17–21.

    PubMed  Google Scholar 

  11. Zheng T, Xu J. Age-related changes of human limbus on in vivo confocal microscopy. Cornea 2008;27:782–786.

    Article  PubMed  Google Scholar 

  12. Shortt AJ, Secker GA, Munro PM, Khaw PT, Tuft SJ, Daniels JT. Characterization of the limbal epithelial stem cell niche: novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 2007;25:1402–1409.

    Article  PubMed  Google Scholar 

  13. Mazzotta C, Traversi C, Baiocchi S, et al. Corneal healing after riboflavin ultraviolet-A collagen cross-linking determined by confocal laser scanning microscopy in vivo: early and late modifications. Am J Ophthalmol 2008;146:527–533.

    Article  CAS  PubMed  Google Scholar 

  14. Zhivov A, Stave J, Vollmar B, Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch Clin Exp Ophthalmol 2005;243:1056–1061.

    Article  PubMed  Google Scholar 

  15. Zhivov A, Stave J, Vollmar B, Guthoff R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the corneal epithelium of healthy volunteers and contact lens wears. Cornea 2007;26:47–54.

    Article  PubMed  Google Scholar 

  16. Mastropasqua L, Nubile M, Lanzini M, et al. Epithelial dendritic cell distribution in normal and inflamed human cornea: in vivo confocal microscopy study. Am J Ophthalmol 2006;142:736–744.

    Article  PubMed  Google Scholar 

  17. Su PY, Hu FR, Chen YM, Han JH, Chen WL. Dendritiform cells found in central cornea by in-vivo confocal microscopy in a patient with mixed bacterial keratitis. Ocul Immunol Inflamm 2006;14:241–244.

    Article  PubMed  Google Scholar 

  18. Auran JD, Koester CJ, Kleiman NJ, et al. Scanning slit confocal microscopic observation of cell morphology and movement within the normal human anterior cornea. Ophthalmology 1995;102:33–41.

    CAS  PubMed  Google Scholar 

  19. Kobayashi A, Sugiyama K. In vivo corneal confocal microscopic findings of palisades of Vogt and its underlying limbal stroma. Cornea 2005;24:435–437.

    Article  PubMed  Google Scholar 

  20. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning 1988;10:128–138.

    Google Scholar 

  21. Cavanagh HD, Jester JV, Essepian J, et al. Confocal microscopy of the living eye. CLAO J 1990;16:65–73.

    CAS  PubMed  Google Scholar 

  22. Furrer P, Mayer JM, Gurny R. Confocal microscopy as a tool for the investigation of the anterior part of the eye. J Ocul Pharmacol Ther 1997;13:559–578.

    Article  CAS  PubMed  Google Scholar 

  23. Bohnke M, Masters BR. Confocal microscopy of the cornea. Prog Retin Eye Res 1999;18:553–628.

    Article  CAS  PubMed  Google Scholar 

  24. Jalbert I, Stapleton F, Papas E, Sweeney DF, Coroneo M. In vivo confocal microscopy of the human cornea. Br J Ophthalmol 2003;87:225–236.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihisa Takahashi.

About this article

Cite this article

Takahashi, N., Chikama, Ti., Yanai, R. et al. Structures of the corneal limbus detected by laser-scanning confocal biomicroscopy as related to the palisades of Vogt detected by slit-lamp microscopy. Jpn J Ophthalmol 53, 199–203 (2009). https://doi.org/10.1007/s10384-008-0661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-008-0661-4

Key Words

Navigation