Skip to main content

Advertisement

Log in

Treatment of age-related macular degeneration: Beyond VEGF

  • Review
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Current therapy for age-related macular degeneration (AMD) shows a dramatic change from clinical practice a decade ago. While the first pharmacologic treatment, verteporfin photodynamic therapy (PDT) slowed disease progression, newer anti-vascular epithelial growth factor (VEGF) therapies have also shown vision improvement in many patients. Combination therapies (PDT + steroid + anti-VEGF) have shown some promise, particularly in certain classes of disease. Genetic studies have identified common gene variants in the complement factor H gene that confers susceptibility to AMD, and treatments targeting the complement pathway are being explored. Another area of research is directed at the components of Bruch membrane; studies of changes in the elastic fibers and collagen within Bruch may yield drug targets for prevention and halting of disease progression. Finally, studies in photoreceptor apoptosis have identified the role of cytokines, such as monocyte chemotactic protein 1, tumor necrosis factor α, and interleukin 1β, associated with photoreceptor cell death and should be pursued as potential therapies to improve vision outcomes in neovascular AMD. Today’s research into the biology of AMD will lead us to better treatment and perhaps even preventive measures in the decades ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 2001;119:1417–1436.

  2. Miller J, Schmidt-Erfurth U, Sickenberg M, et al. Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration. Results of a single treatment in a phase 1 and 2 study. Arch Ophthalmol 1999;117:1161–1173.

    CAS  PubMed  Google Scholar 

  3. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials—TAP report. Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) Study Group. Arch Ophthalmol 1999;117:1329–1345.

  4. Gillies M, Simpson J, Luo W, et al. A randomized clinical trial of a single dose of intravitreal triamcinolone acetonide for neovascular age-related macular degeneration: one-year results. Arch Ophthalmol 2003;121:667–673.

    Article  CAS  PubMed  Google Scholar 

  5. Gilles MC, Larsson J. The effect of intravitreal triamcinolone on foveal edema in exudative macular degeneration. Am J Ophthalmol 2007;144:134–136.

    Article  Google Scholar 

  6. Spaide RF, Sorenson J, Maranan L. Combined photodynamic therapy with verteporfin and intravitreal triamcinolone acetonide for choroidal neovascularization. Ophthalmology 2003;110:1517–1525.

    Article  PubMed  Google Scholar 

  7. Gragoudas ES, Adamis A, Cunningham EJ, Feinsod M, Guyer D. Pegaptanib for neovascular age-related macular degeneration. N Eng J Med 2004;351:2805–2816.

    Article  CAS  Google Scholar 

  8. Ishida S, Usui T, Yamashiro K, et al. VEGF-164-mediated inflammation is required for pathological, but not physiological, ischemiainduced retinal neovascularization. J Exp Med 2003;198:483–489.

    Article  CAS  PubMed  Google Scholar 

  9. Ng EWM, Adamis AP. Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases. Ann N Y Acad Sci 2006;1082:151–171.

    Article  CAS  PubMed  Google Scholar 

  10. Ng EWM, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 2006;5:123–132.

    Article  CAS  PubMed  Google Scholar 

  11. Miller JW, Chung C, Kim R, Group FtMS. Randomized, controlled phase III study of ranibizumab (Lucentis) for minimally classic or occult neovascular age-related macular degeneration. American Society of Retina Specialists 23rd Annual Meeting. Montreal, Quebec, Canada; 2005.

  12. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 2006;355:1419–1431.

    Article  CAS  PubMed  Google Scholar 

  13. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 2006;355:1432–1444.

    Article  CAS  PubMed  Google Scholar 

  14. Tano Y, Ohji M; EXTEND-I Study Group. EXTEND-I: safety and efficacy of ranibizumab in Japanese patients with subfoveal choroidal neovascularization secondary to age-related macular degeneration. Acta Ophthalmol 2010 May;88:309–316.

    Article  CAS  PubMed  Google Scholar 

  15. Rich RM, Rosenfeld PJ, Puliafito CA, et al. Short-term safety and efficacy of intravitreal bevacizumab (Avastin) for neovascular agerelated macular degeneration. Retina 2006;26:495–511.

    Article  PubMed  Google Scholar 

  16. National Institutes of Health/National Eye Institute. Comparison of age-related macular degeneration treatment trials: CATT Study (Avastin vs Lucentis). 2009; http://clinicaltrials.gov/show/NCT00344227.

  17. Mitka M. Study aims to clarify efficacy, safety and eye drug treatments. JAMA 2007;297:1538–1539.

    Article  CAS  PubMed  Google Scholar 

  18. Kiss S. Emerging therapies for the treatment of age-related macular degeneration. The Ophthalmology Report. Jersey City, New Jersey: Direct One Communications, Inc.; 2008;1(2):1–23.

    Google Scholar 

  19. Regillo CD, Brown DM, Abraham P, et al. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER Study year 1. Am J Ophthalmol 2008;145:239–248.

    Article  CAS  PubMed  Google Scholar 

  20. Rosenfeld PJ, Rich RM, Lalwani GA. Ranibizumab: phase III clinical trial results. Ophthalmol Clin North Am 2006;19:361–372.

    PubMed  Google Scholar 

  21. Lalwani GA, Rosenfeld PJ, Fung AE, et al. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degenerations: year 2 of the PrONTO study. Am J Ophthalmol 2009;148:43–58.

    Article  CAS  PubMed  Google Scholar 

  22. Spaide RF, Sorenson J, Maranan L. Combined photodynamic therapy and intravitreal triamcinolone for nonsubfoveal choroidal neovascularization. Retina 2005;25:685–690.

    Article  PubMed  Google Scholar 

  23. Chan WM, Lai TY, Tano Y, Liu DT, Li KK, Lam DS. Photodynamic therapy in macular diseases of Asian populations: when East meets West. Jpn J Ophthalmol 2006;50:161–169.

    Article  CAS  PubMed  Google Scholar 

  24. She H, Nakazawa T, Matsubara A, et al. Photoreceptor protection after photodynamic therapy using dexamethasone in a rat model of choroidal neovascularization. Invest Ophthalmol Vis Sci 2008;49:5008–5014.

    Article  PubMed  Google Scholar 

  25. QLT, Inc. Press release: QLT announces positive results from the RADICAL study, 2 June 2009; http://www.qltinc.com/newsCenter/2009/090602.htm.

  26. Augustin AJ, Puls S, Offermann I. Triple therapy for choroidal neovascularization due to age-related macular degeneration: verteporfin PDT, bevacizumab, and dexamethasone. Retina 2007;27:133–140.

    Article  PubMed  Google Scholar 

  27. Kaiser PK. Combination therapy with verteporfin and anti-VEGF agents in neovascular age-related macular degeneration: where do we stand? Br J Ophthalmol 2010;94:143–145.

    Article  PubMed  Google Scholar 

  28. QLT, Inc. press release: QLT announces 12-month results from Novartis sponsored Mont Blanc study evaluating standard-fluence Visudyne? combination therapy; http://www.qltinc.com/newsCenter/ 2009/090615.htm.

  29. QLT, Inc. press release: 12-month results from Denali study evaluating verteporfin PDT (Visudyne?) combination therapy; http://www.qltinc.com/newsCenter/2010/100615.htm.

  30. Marneros AG, She H, Zambarakji H, et al. Endogenous endostatin inhibits choroidal neovascularization. FASEB J 2007;21:3809–3818.

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Zhao Y, Gao J, et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet 2004;36:178–182.

    Article  CAS  PubMed  Google Scholar 

  32. Yu HG, Liu X, Kiss S, et al. Increased choroidal neovascularization following laser induction in mice lacking lysyl oxidase-like 1. Invest Ophthalmol Vis Sci 2008;49:2599–2605.

    Article  PubMed  Google Scholar 

  33. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science 2005;308:421–424.

    Article  CAS  PubMed  Google Scholar 

  34. Haines JL, Hauser MA, Schmidt S, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 2005;308:419–421.

    Article  CAS  PubMed  Google Scholar 

  35. Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005;308:385–389.

    Article  CAS  PubMed  Google Scholar 

  36. Hageman GS, Anderson DH, Johnson LV, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci U S A 2005;102:7227–7232.

    Article  CAS  PubMed  Google Scholar 

  37. Francis PJ, Schultz DW, Hamon S, Ott J, Weleber RG, Klein ML. Haplotypes in the complement factor H (CFH) gene: associations with drusen and advanced age-related macular degeneration. PLoS ONE 2007;2:e1197.

    Article  PubMed  Google Scholar 

  38. Lee KY, Vithana EN, Mathur R, et al. Association analysis of CFH, C2, BF, and HTRA1 gene polymorphisms in Chinese patients with polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci 2008;49:2613–2619.

    Article  PubMed  Google Scholar 

  39. Kaur I, Katta S, Hussain A, et al. Variants in the 10q26 gene cluster (LOC387715 and HTRA1) exhibit enhanced risk of age-related macular degeneration along with CFH in Indian patients. Invest Ophthalmol Vis Sci 2008;49:1771–1776.

    Article  PubMed  Google Scholar 

  40. Sarks SH, Van Driel D, Maxwell L, Killingsworth M. Softening of drusen and subretinal neovascularization. Trans Ophthalmol Soc UK 1980;100:414–422.

    CAS  PubMed  Google Scholar 

  41. Donoso LA, Kim D, Frost A, Callahan A, Hageman G. The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2006;51:137–152.

    Article  PubMed  Google Scholar 

  42. Schwesinger C, Yee C, Rohan RM, et al. Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am J Pathol 2001;158:1161–1172.

    CAS  PubMed  Google Scholar 

  43. Chong NH, Keonin J, Luthert PJ, et al. Decreased thickness and integrity of the macular elastic layer of Bruch’s membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol 2005;166:241–251.

    PubMed  Google Scholar 

  44. Stone EM, Braun TA, Russell SR, et al. Missense variation in the fibulin 5 gene and age-related macular degeneration. N Engl J Med 2004;351:346–353.

    Article  CAS  PubMed  Google Scholar 

  45. Thorleifsson G, Magnusson KP, Sulem P, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 2007;317:1397–1400.

    Article  CAS  PubMed  Google Scholar 

  46. Fan BJ, Pasquale L, Grosskreutz CL, et al. DNA sequence variants in the LOXL1 gene are associated with pseudoexfoliation glaucoma in a U.S. clinic-based population with broad ethnic diversity. BMC Med Genet 2008;9:5.

    Article  PubMed  Google Scholar 

  47. Spraul CW, Grossniklaus HE. Characteristics of drusen and Bruch’s membrane in postmortem eyes with age-related macular degeneration. Arch Ophthalmol 1997;115:267–273.

    CAS  PubMed  Google Scholar 

  48. Mori K, Ando A, Gehlbach P, et al. Inhibition of choroidal neovascularization by intravenous injection of adenoviral vectors expressing secretable endostatin. Am J Pathol 2001;159:313–320.

    CAS  PubMed  Google Scholar 

  49. Marneros AG, Olsen BR. Physiological role of collagen XVIII and endostatin. FASEB J 2005;19:716–728.

    Article  CAS  PubMed  Google Scholar 

  50. Zacks DN, Zheng QD, Han Y, Bakhru R, Miller JW. FAS-mediated apoptosis and its relation to intrinsic pathway activation in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci 2004;45:4563–4569.

    Article  PubMed  Google Scholar 

  51. Nakazawa T, Matsubara A, Noda K, et al. Characterization of cytokine responses for retinal detachment in rats. Mol Vis 2006;12:867–878.

    CAS  PubMed  Google Scholar 

  52. Zacks DN, Hanninen V, Pantcheva M, Ezra E, Grosskreutz CL, Miller JW. Caspase activation in an experimental model of retinal detachment. Invest Ophthalmol Vis Sci 2003;44:1262–1267.

    Article  PubMed  Google Scholar 

  53. Nakazawa T, Hisatomi T, Nakazawa C, et al. Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. Proc Natl Acad Sci U S A 2007;104:2425–2430.

    Article  CAS  PubMed  Google Scholar 

  54. Hisatomi T, Nakazawa T, Noda K, et al. HIV protease inhibitors provide neuroprotection through inhibition of mitochondrial apoptosis in mice. J Clin Invest 2008;118:2025–2038.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan W. Miller.

About this article

Cite this article

Miller, J.W. Treatment of age-related macular degeneration: Beyond VEGF. Jpn J Ophthalmol 54, 523–528 (2010). https://doi.org/10.1007/s10384-010-0863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-010-0863-4

Keywords

Navigation