Skip to main content

Advertisement

Log in

Electrophysiological studies in newly onset type 2 diabetes without visible vascular retinopathy

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the early alterations of retinal function, assessed with electrophysiology, in newly onset type 2 diabetes patients without vascular retinopathy. Seventeen patients with newly diagnosed type 2 diabetes (duration 7 ± 3 months), without any vascular retinopathy in fundus photographs, were examined with full-field electroretinogram (ERG) and multifocal ERG (mfERG). The results were compared with those of age-matched subjects without diabetes. In the dark-adapted full-field ERG, the a-wave and the 30-Hz flicker implicit times were delayed in diabetes patients compared to controls, P = 0.001 and P = 0.020. In the first-order kernel of the mfERG, the first positive wave, P1, was delayed in all areas measured. The electrophysiological examinations demonstrate early alterations of retinal function characterised by a delayed a-wave implicit time in the dark-adapted full-field ERG, representing the rod signalling, and alterations in the multifocal ERG reflecting cone and/or postreceptoral function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shaw JE, Sicree RA, Zimmet PZ (2030) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14

    Article  Google Scholar 

  2. Trautner C, Icks A, Haastert B, Plum F, Berger M (1997) Incidence of blindness in relation to diabetes. A population-based study. Diabetes Care 20(7):1147–1153

    Article  PubMed  CAS  Google Scholar 

  3. Antonetti DA, Barber AJ, Bronson SK, Freeman WM, Gardner TW, Jefferson LS, Kester M, Kimball SR, Krady JK, LaNoue KF, Norbury CC, Quinn PG, Sandirasegarane L (2006) Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55(9):2401–2411

    Article  PubMed  CAS  Google Scholar 

  4. Juen S, Kieselbach GF (1990) Electrophysiological changes in juvenile diabetics without retinopathy. Arch Ophthalmol 108(3):372–375

    Article  PubMed  CAS  Google Scholar 

  5. Palmowski AM, Sutter EE, Bearse MA Jr, Fung W (1997) Mapping of retinal function in diabetic retinopathy using the multifocal electroretinogram. Invest Ophthalmol Vis Sci 38(12):2586–2596

    PubMed  CAS  Google Scholar 

  6. UK Prospective Diabetes Study (1990) Complications in newly diagnosed type 2 diabetic patients and their association with different clinical and biochemical risk factors. Diabetes Res 13(1):1–11

    Article  Google Scholar 

  7. Hoelzel W, Weykamp C, Jeppsson JO, Miedema K, Barr JR, Goodall I, Hoshino T, John WG, Kobold U, Little R, Mosca A, Mauri P, Paron R, Susanto F, Takei I, Thienpont L, Umemoto M, Wiedmeyer HM (2004) IFCC reference system for measurement of hemoglobin A1c in human blood and the national standardization schemes in the United States, Japan, and Sweden: a method-comparison study. Clin Chem 50(1):166–174

    Article  PubMed  CAS  Google Scholar 

  8. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118(1):69–77

    Article  PubMed  CAS  Google Scholar 

  9. Holfort SK, Klemp K, Kofoed PK, Sander B, Larsen M (2010) Scotopic electrophysiology of the retina during transient hyperglycemia in type 2 diabetes. Invest Ophthalmol Vis Sci 51(5):2790–2794

    Article  PubMed  Google Scholar 

  10. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Palmowski-Wolfe AM (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol 116(1):1–11

    Article  PubMed  Google Scholar 

  11. Jamison JA, Bush RA, Lei B, Sieving PA (2001) Characterization of the rod photoresponse isolated from the dark-adapted primate ERG. Vis Neurosci 18(3):445–455

    Article  PubMed  CAS  Google Scholar 

  12. Robson JG, Saszik SM, Ahmed J, Frishman LJ (2003) Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol 547(Pt 2):509–530

    Article  PubMed  CAS  Google Scholar 

  13. Bresnick GH, Palta M (1987) Temporal aspects of the electroretinogram in diabetic retinopathy. Arch Ophthalmol 105(5):660–664

    Article  PubMed  CAS  Google Scholar 

  14. Kim SH, Lee SH, Bae JY, Cho JH, Kang YS (1997) Electroretinographic evaluation in adult diabetics. Doc Ophthalmol 94(3):201–213

    Article  PubMed  Google Scholar 

  15. Luu CD, Szental JA, Lee SY, Lavanya R, Wong TY (2010) Correlation between retinal oscillatory potentials and retinal vascular caliber in type 2 diabetes. Invest Ophthalmol Vis Sci 51(1):482–486

    Article  PubMed  Google Scholar 

  16. Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121(4):547–557

    Article  PubMed  Google Scholar 

  17. Tyrberg M, Ponjavic V, Lovestam-Adrian M (2008) Multifocal electroretinogram (mfERG) in patients with diabetes mellitus and an enlarged foveal avascular zone (FAZ). Doc Ophthalmol 117(3):185–189

    Article  PubMed  Google Scholar 

  18. Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ (2004) Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 45(3):948–954

    Article  PubMed  Google Scholar 

  19. Bronson-Castain KW, Bearse MA Jr, Neuville J, Jonasdottir S, King-Hooper B, Barez S, Schneck ME, Adams AJ (2009) Adolescents with type 2 diabetes: early indications of focal retinal neuropathy, retinal thinning, and venular dilation. Retina 29(5):618–626

    Article  PubMed  Google Scholar 

  20. Klemp K, Larsen M, Sander B, Vaag A, Brockhoff PB, Lund-Andersen H (2004) Effect of short-term hyperglycemia on multifocal electroretinogram in diabetic patients without retinopathy. Invest Ophthalmol Vis Sci 45(10):3812–3819

    Article  PubMed  Google Scholar 

  21. Kohner EM, Patel V, Rassam SM (1995) Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes 44(6):603–607

    Article  PubMed  CAS  Google Scholar 

  22. Grunwald JE, DuPont J, Riva CE (1996) Retinal haemodynamics in patients with early diabetes mellitus. Br J Ophthalmol 80(4):327–331

    Article  PubMed  CAS  Google Scholar 

  23. Tyrberg M, Ponjavic V, Lovestam-Adrian M (2005) Multifocal electroretinography (mfERG) in insulin dependent diabetics with and without clinically apparent retinopathy. Doc Ophthalmol 110(2–3):137–143

    Article  PubMed  Google Scholar 

  24. Sutter EE, Bearse MA Jr (1999) The optic nerve head component of the human ERG. Vis Res 39(3):419–436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Gorthon and Zoéga Foundations, the Committee for the Blind in Malmohus County, the Gyllenstierna Krapperup′s Foundation, the Swedish Medical Research Council and the Skane County Council′s Research and Development Foundation. The authors are grateful to Eva Steffert and Birgitta Teinvall for photographing and grading, and to Boel Nilsson and Ing Marie Holst for help with electrophysiological examinations.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tyrberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyrberg, M., Lindblad, U., Melander, A. et al. Electrophysiological studies in newly onset type 2 diabetes without visible vascular retinopathy. Doc Ophthalmol 123, 193–198 (2011). https://doi.org/10.1007/s10633-011-9298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-011-9298-6

Keywords

Navigation