Skip to main content

Advertisement

Log in

Disease progression in autosomal dominant cone–rod dystrophy caused by a novel mutation (D100G) in the GUCA1A gene

  • Clinical Case Report
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To document longitudinal fundus autofluorescence (FAF) and electroretinogram (ERG) findings in a family with cone–rod dystrophy (CRD) caused by a novel missense mutation (D100G) in the GUCA1A gene.

Methods

Observational case series.

Results

Three family members 26–49 years old underwent complete clinical examinations. In all patients, funduscopic findings showed intraretinal pigment migration, loss of neurosensory retinal pigment epithelium, and macular atrophy. FAF imaging revealed the presence of a progressive hyperautofluorescent ring around a hypoautofluorescent center corresponding to macular atrophy. Full-field ERGs showed a more severe loss of cone than rod function in each patient. Thirty-hertz flicker responses fell far below normal limits. Longitudinal FAF and ERG findings in one patient suggested progressive CRD. Two more advanced patients exhibited reduced rod response consistent with disease stage. Direct sequencing of the GUCA1A gene revealed a new missense mutation, p.Asp100Gly (D100G), in each patient.

Conclusion

Patients with autosomal dominant CRD caused by a D100G mutation in GUCA1A exhibit progressive vision loss early within the first decade of life identifiable by distinct ERG characteristics and subsequent genetic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

CD:

Cone dystrophy

CRD:

Cone–rod dystrophy

References

  1. Krill AE, Deutman AF, Fishman M (1973) The cone degenerations. Doc Ophthalmol 35:1–80

    Article  CAS  PubMed  Google Scholar 

  2. Atmaca-Sonmez P, Khan NW, Heckenlively JR (2008) Chapter 178: Hereditary cone dystrophies. In: Albert D, Jakobiec F (eds) Albert & Jakobiec's principles & practice of ophthalmology. Saunders Retina and vitreous, Philadelphia, pp 2253–2259

  3. Michaelides M, Hunt DM, Moore AT (2004) The cone dysfunction syndromes. Br J Ophthalmol 88:291–297

    Article  CAS  PubMed  Google Scholar 

  4. Michaelides M, Wilkie SE, Jenkins S, Holder GE, Hunt DM, Moore AT, Webster AR (2005) Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy. Ophthalmology 112:1442–1447

    Article  PubMed  Google Scholar 

  5. Wang NK, Chou CL, Lima LH, Cella W, Tosi J, Yannuzzi LA, Tsang SH (2009) Fundus autofluorescence in cone dystrophy. Doc Ophthalmol 119:141–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Thiadens AA, Phan TM, Zekveld-Vroon RC, Leroy BP, van den Born LI, Hoyng CB, Klaver CC, Roosing S, Pott JW, van Schooneveld MJ, van Moll-Ramirez N, van Genderen MM, Boon CJ, den Hollander AI, Bergen AA, De Baere E, Cremers FP, Lotery AJ, Consortium WCftCDSG (2012) Clinical course, genetic etiology, and visual outcome in cone and cone-rod dystrophy. Ophthalmology 119:819–826

    Article  PubMed  Google Scholar 

  7. Payne AM, Downes SM, Bessant DA, Taylor R, Holder GE, Warren MJ, Bird AC, Bhattacharya SS (1998) A mutation in guanylate cyclase activator 1A (GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1. Hum Mol Genet 7:273–277

    Article  CAS  PubMed  Google Scholar 

  8. Swain PK, Chen S, Wang QL, Affatigato LM, Coats CL, Brady KD, Fishman GA, Jacobson SG, Swaroop A, Stone E, Sieving PA, Zack DJ (1997) Mutations in the cone-rod homeobox gene are associated with the cone-rod dystrophy photoreceptor degeneration. Neuron 19:1329–1336

    Article  CAS  PubMed  Google Scholar 

  9. Jiang L, Wheaton D, Bereta G, Zhang K, Palczewski K, Birch DG, Baehr W (2008) A novel GCAP1(N104 K) mutation in EF-hand 3 (EF3) linked to autosomal dominant cone dystrophy. Vision Res 48:2425–2432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gregory-Evans K, Kelsell RE, Gregory-Evans CY, Downes SM, Fitzke FW, Holder GE, Simunovic M, Mollon JD, Taylor R, Hunt DM, Bird AC, Moore AT (2000) Autosomal dominant cone-rod retinal dystrophy (CORD6) from heterozygous mutation of GUCY2D, which encodes retinal guanylate cyclase. Ophthalmology 107:55–61

    Article  CAS  PubMed  Google Scholar 

  11. Payne AM, Morris AG, Downes SM, Johnson S, Bird AC, Moore AT, Bhattacharya SS, Hunt DM (2001) Clustering and frequency of mutations in the retinal guanylate cyclase (GUCY2D) gene in patients with dominant cone-rod dystrophies. J Med Genet 38:611–614

    Article  CAS  PubMed  Google Scholar 

  12. Zhao X, Ren Y, Zhang X, Chen C, Dong B, Li Y (2013) A novel GUCY2D mutation in a Chinese family with dominant cone dystrophy. Mol Vis 19:1039–1046

    CAS  PubMed  Google Scholar 

  13. Downes SM, Holder GE, Fitzke FW, Payne AM, Warren MJ, Bhattacharya SS, Bird AC (2001) Autosomal dominant cone and cone-rod dystrophy with mutations in the guanylate cyclase activator 1A gene-encoding guanylate cyclase activating protein-1. Arch Ophthalmol 119:96–105

    CAS  PubMed  Google Scholar 

  14. Kohn L, Haraldsson, Kohl S, Inglehearn CF, Sandgren O, Golovleva I (2008) Mutation spectra in PITPNM3 known as a cause of autosomal dominant cone rod dystrophy (CORD5) (Abstract). American Society of Human Genet 2008 Meeting (#21021)

  15. Johnson S, Halford S, Morris AG, Patel RJ, Wilkie SE, Hardcastle AJ, Moore AT, Zhang K, Hunt DM (2003) Genomic organisation and alternative splicing of human RIM1, a gene implicated in autosomal dominant cone-rod dystrophy (CORD7). Genomics 81:304–314

    Article  CAS  PubMed  Google Scholar 

  16. Sohocki MM, Daiger SP, Bowne SJ, Rodriquez JA, Northrup H, Heckenlively JR, Birch DG, Mintz-Hittner H, Ruiz RS, Lewis RA, Saperstein DA, Sullivan LS (2001) Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 17:42–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yang Z, Chen Y, Lillo C, Chien J, Yu Z, Michaelides M, Klein M, Howes KA, Li Y, Kaminoh Y, Chen H, Zhao C, Al-Sheikh YT, Karan G, Corbeil D, Escher P, Kamaya S, Li C, Johnson S, Frederick JM, Zhao Y, Wang C, Cameron DJ, Huttner WB, Schorderet DF, Munier FL, Moore AT, Birch DG, Baehr W, Hunt DM, Williams DS, Zhang K (2008) Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest 118:2908–2916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kobayashi A, Higashide T, Hamasaki D, Kubota S, Sakuma H, An W, Fujimaki T, McLaren MJ, Weleber RG, Inana G (2000) HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model. Invest Ophthalmol Vis Sci 41:3268–3277

    CAS  PubMed  Google Scholar 

  19. Nakazawa M, Naoi N, Wada Y, Nakazaki S, Maruiwa F, Sawada A, Tamai M (1996) Autosomal dominant cone-rod dystrophy associated with a Val200Glu mutation of the peripherin/RDS gene. Retina 16:405–410

    Article  CAS  PubMed  Google Scholar 

  20. Abid A, Ismail M, Mehdi SQ, Khaliq S (2006) Identification of novel mutations in the SEMA4A gene associated with retinal degenerative diseases. J Med Genet 43:378–381

    Article  CAS  PubMed  Google Scholar 

  21. Yang RB, Foster DC, Garbers DL, Fülle HJ (1995) Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci USA 92:602–606

    Article  CAS  PubMed  Google Scholar 

  22. Nishiguchi KM, Sokal I, Yang L, Roychowdhury N, Palczewski K, Berson EL, Dryja TP, Baehr W (2004) A novel mutation (I143NT) in guanylate cyclase-activating protein 1 (GCAP1) associated with autosomal dominant cone degeneration. Invest Ophthalmol Vis Sci 45:3863–3870

    Article  PubMed Central  PubMed  Google Scholar 

  23. Pugh EN Jr, Duda T, Sitaramayya A, Sharma RK (1997) Photoreceptor guanylate cyclases: a review. Biosci Rep 5:429–473

    Article  Google Scholar 

  24. Gorczyca WA, Polans AS, Surgucheva IG, Subbaraya I, Baehr W, Palczewski K (1995) Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem 270:22029–22036

    Article  CAS  PubMed  Google Scholar 

  25. Polans A, Baehr W, Palczewski K (1996) Turned on by Ca2 + ! The physiology and pathology of Ca(2 +)-binding proteins in the retina. Trends Neurosci 19:547–554

    Article  CAS  PubMed  Google Scholar 

  26. Tsang SH, Tsui I, Chou CL, Zernant J, Haamer E, Iranmanesh R, Tosi J, Allikmets R (2008) A novel mutation and phenotypes in phosphodiesterase 6 deficiency. Am J Ophthalmol 146:780–788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sancho-Pelluz J, Tosi J, Hsu CW, Lee F, Wolpert K, Tabacaru MR, Greenberg JP, Tsang SH, Lin CS (2012) Mice with a D190 N mutation in the gene encoding rhodopsin: a model for human autosomal-dominant retinitis pigmentosa. Mol Med 18:549–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Gal A, Orth U, Baehr W, Schwinger E, Rosenberg T (1994) Heterozygous missense mutation in the rod cGMP phosphodiesterase beta-subunit gene in autosomal dominant stationary night blindness. Nat Genet 7:551

    Article  CAS  PubMed  Google Scholar 

  29. Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Châtelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frézal J, Dufier JL, Pittler S, Munnich A, Kaplan J (1996) Retinal-specific guanylate cyclase gene mutations in Leber’s congenital amaurosis. Nat Genet 14:461–464

    Article  CAS  PubMed  Google Scholar 

  30. Perrault I, Rozet JM, Gerber S, Ghazi I, Ducroq D, Souied E, Leowski C, Bonnemaison M, Dufier JL, Munnich A, Kaplan J (2000) Spectrum of retGC1 mutations in Leber’s congenital amaurosis. Eur J Hum Genet 8:578–582

    Article  CAS  PubMed  Google Scholar 

  31. Heckenlively JR, Arden GB (2006) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 795–802

    Google Scholar 

  32. Hamel CP (2007) Cone rod dystrophies. Orphanet J Rare Dis 2:7

    Article  PubMed Central  PubMed  Google Scholar 

  33. Wang I, Khan NW, Branham K, Wissinger B, Kohl S, Heckenlively JR (2012) Establishing baseline rod electroretinogram values in achromatopsia and cone dystrophy. Doc Ophthalmol 125:229–233

    Article  Google Scholar 

  34. Palczewski K, Sokal I, Baehr W (2004) Guanylate cyclase-activating proteins: structure, function, and diversity. Biochem Biophys Res Commun 322:1123–1130

    Article  CAS  PubMed  Google Scholar 

  35. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M, Vision ISfCEo (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77

    Article  CAS  PubMed  Google Scholar 

  36. Kachi S, Nishizawa Y, Olshevskaya E, Yamazaki A, Miyake Y, Wakabayashi T, Dizhoor A, Usukura J (1999) Detailed localization of photoreceptor guanylate cyclase activating protein-1 and -2 in mammalian retinas using light and electron microscopy. Exp Eye Res 68:465–473

    Article  CAS  PubMed  Google Scholar 

  37. Bovolenta P, Cisneros E (2009) Retinitis pigmentosa: cone photoreceptors starving to death. Nat Neurosci 12:5–6

    Article  CAS  PubMed  Google Scholar 

  38. Kitiratschky VB, Behnen P, Kellner U, Heckenlively JR, Zrenner E, Jägle H, Kohl S, Wissinger B, Koch KW (2009) Mutations in the GUCA1A gene involved in hereditary cone dystrophies impair calcium-mediated regulation of guanylate cyclase. Hum Mutat 30:E782–E796

    Article  PubMed  Google Scholar 

  39. Katz ML, Drea CM, Eldred GE, Hess HH, Robison WG (1986) Influence of early photoreceptor degeneration on lipofuscin in the retinal pigment epithelium. Exp Eye Res 43:561–573

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by Grants from the National Eye Institute/NIH EY021163, EY019861, EY018213, EY019007 (Core Support for Vision Research), National Cancer Institute Core [5P30CA013696] and unrestricted funds from Research to Prevent Blindness, New York, NY, USA. S.H.T. is a member of the RD-CURE Consortium and is supported by Tistou and Charlotte Kerstan Foundation, the National Institute of Health [R01EY018213], the Research to Prevent Blindness Physician-Scientist Award, the Barbara and Donald Jonas Family Fund, the Schneeweiss Stem Cell Fund, New York State [N09G-302], the Foundation Fighting Blindness New York Regional Research Center Grant [C-NY05-0705-0312], the Joel Hoffman Fund, Professor Gertrude Rothschild Stem Cell Foundation, and Gebroe Family Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Tsang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Pedigree for the affected family illustrates the dominant inheritance (PDF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nong, E., Lee, W., Merriam, J.E. et al. Disease progression in autosomal dominant cone–rod dystrophy caused by a novel mutation (D100G) in the GUCA1A gene. Doc Ophthalmol 128, 59–67 (2014). https://doi.org/10.1007/s10633-013-9420-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-013-9420-z

Keywords

Navigation