Skip to main content

Advertisement

Log in

Development of Apolipoprotein B Antisense Molecules as a Therapy for Hyperlipidemia

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

As new studies demonstrate that lower levels of low-density lipoprotein cholesterol (LDL-C) reduce cardiovascular disease, and as goals for LDL-C in high-risk individuals are reduced further and further, reaching those goals becomes more difficult for a significant percentage of the population. New therapeutic approaches to lower LDL-C would, therefore, be advantageous, particularly in those who are most likely to suffer cardiovascular disease—associated morbidity and mortality. Mouse and human genetic models suggest that decreasing hepatic apolipoprotein B (apoB) production may be a therapeutic approach for the treatment of dyslipidemia. Because antisense oligonucleotides naturally distribute to the liver and can specifically inhibit synthesis of proteins from their messenger RNAs, antisense oligonucleotides represent a potential approach for decreasing the biosynthesis of apoB, and thereby, the production of both very low density lipoprotein (VLDL) and LDL. Newly developed apoB antisense approaches have produced results in animal models and humans, providing proof of concept regarding reductions in LDL-C concentrations. Surprisingly, despite prior experience with inhibitors of microsomal triglyceride transfer protein, which also inhibits the secretion of VLDL, apoB antisense-mediated reduction in VLDL secretion does not appear to cause marked steatosis. The mechanisms whereby two different approaches for inhibiting apoB and triglyceride secretion have different effects on hepatic triglycerides are currently being examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Anderson RN, Kochanek KD, Murphy SL: Report of final mortality statistics, 1995. Monthly Vital Stat Rep 1997, 45(11 Suppl 2):1–79.

    Google Scholar 

  2. Xu J, Kochanek KD, Tejada-Vera B: Deaths: preliminary data for 2007. National Vital Stat Rep 2009, 58:1–51.

    Google Scholar 

  3. Versmissen J, Oosterveer DM, Yazdanpanah M, et al.: Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ 2008, 337:a2423.

    Article  PubMed  Google Scholar 

  4. Law MR, Wald NJ, Thompson SG: By how much and how quickly does reduction in serum cholesterol concentration lower risk of ischaemic heart disease? BMJ 1994, 308:367–372.

    CAS  PubMed  Google Scholar 

  5. Law M, Rudnicka AR: Statin safety: a systematic review. Am J Cardiol 2006, 97:52C–60C.

    Article  CAS  PubMed  Google Scholar 

  6. Smiley WH, Khan BV, Sperling LS: Management of the statin-intolerant patient. Curr Treat Options Cardiovasc Med 2009, 11:263–271.

    Article  Google Scholar 

  7. Hou R, Goldberg AC: Lowering low-density lipoprotein cholesterol: statins, ezetimibe, bile acid sequestrants, and combinations: comparative efficacy and safety. Endocrinol Metab Clin North Am 2009, 38:79–97.

    Article  CAS  PubMed  Google Scholar 

  8. Young SG: Recent progress in understanding apolipoprotein B. Circulation 1990, 82:1574–1594.

    CAS  PubMed  Google Scholar 

  9. Davidson NO, Shelness GS: Apolipoprotein B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu Rev Nutr 2000, 20:169–193.

    Article  CAS  PubMed  Google Scholar 

  10. Farese RV Jr, Ruland SL, Flynn LM, et al.: Knockout of the mouse apolipoprotein B gene results in embryonic lethality in homozygotes and protection against diet-induced hypercholesterolemia in heterozygotes. Proc Natl Acad Sci USA 1995, 92:1774–1778.

    Article  CAS  PubMed  Google Scholar 

  11. Lin X, Schonfeld G, Yue P, et al.: Hepatic fatty acid synthesis is suppressed in mice with fatty livers due to targeted apolipoprotein B38.9 mutation. Arterioscler Thromb Vasc Biol 2002, 22:476–482.

    Article  PubMed  Google Scholar 

  12. Srivastava RA, Toth L, Srivastava N, et al.: Regulation of the apolipoprotein B in heterozygous hypobetalipoproteinemic knock-out mice expressing truncated apoB, B81. Low production and enhanced clearance of apoB cause low levels of apoB. Mol Cell Biochem 1999, 202:37–46.

    Article  CAS  PubMed  Google Scholar 

  13. Linton MF, Farese RV Jr, Young SG: Familial hypobetalipoproteinemia. J Lipid Res 1993, 34:521–541.

    CAS  PubMed  Google Scholar 

  14. Schonfeld G, Patterson BW, Yablonskiy DA, et al.: Fatty liver in familial hypobetalipoproteinemia: triglyceride assembly into VLDL particles is affected by the extent of hepatic steatosis. J Lipid Res 2003, 44:470–478.

    Article  CAS  PubMed  Google Scholar 

  15. Tanoli T, Yue P, Yablonskiy D, et al.: Fatty liver in familial hypobetalipoproteinemia: roles of the APOB defects, intra-abdominal adipose tissue, and insulin sensitivity. J Lipid Res 2004, 45:941–947.

    Article  CAS  PubMed  Google Scholar 

  16. Sankatsing RR, Fouchier SW, de Haan S, et al.: Hepatic and cardiovascular consequences of familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 2005, 25:1979–1984.

    Article  CAS  PubMed  Google Scholar 

  17. Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, et al.: The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr 2000, 20:663–697.

    Article  CAS  PubMed  Google Scholar 

  18. Raabe M, Flynn LM, Zlot CH, et al.: Knockout of the abetalipoproteinemia gene in mice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes. Proc Natl Acad Sci USA 1998, 95:8686–8691.

    Article  CAS  PubMed  Google Scholar 

  19. Parhofer KG, Barrett PH: Thematic review series: patient-oriented research. What we have learned about VLDL and LDL metabolism from human kinetics studies. J Lipid Res 2006, 47:1620–1630.

    Article  CAS  PubMed  Google Scholar 

  20. Tybjaerg-Hansen A, Gallagher J, Vincent J, et al.: Familial defective apolipoprotein B-100: detection in the United Kingdom and Scandinavia, and clinical characteristics of ten cases. Atherosclerosis 1990, 80:235–242.

    Article  CAS  PubMed  Google Scholar 

  21. Tybjaerg-Hansen A, Steffensen R, Meinertz H, et al.: Association of mutations in the apolipoprotein B gene with hypercholesterolemia and the risk of ischemic heart disease. N Engl J Med 1998, 338:1577–1584.

    Article  CAS  PubMed  Google Scholar 

  22. Kurreck J: Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 2003, 270:1628–1644.

    Article  CAS  PubMed  Google Scholar 

  23. Crooke ST: Progress in antisense technology. Annu Rev Med 2004, 55:61–95.

    Article  CAS  PubMed  Google Scholar 

  24. Campbell JM, Bacon TA, Wickstrom E: Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Methods 1990, 20:259–267.

    Article  CAS  PubMed  Google Scholar 

  25. Crooke ST: Progress in antisense technology: the end of the beginning. Methods Enzymol 2000, 313:3–45.

    Article  CAS  PubMed  Google Scholar 

  26. Brown DA, Kang SH, Gryaznov SM, et al.: Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J Biol Chem 1994, 269:26801–26805.

    CAS  PubMed  Google Scholar 

  27. Guvakova MA, Yakubov LA, Vlodavsky I, et al.: Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors, and remove it from low affinity binding sites on extracellular matrix. J Biol Chem 1995, 270:2620–2627.

    Article  CAS  PubMed  Google Scholar 

  28. Manoharan M: 2′-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim Biophys Acta 1999, 1489:117–130.

    CAS  PubMed  Google Scholar 

  29. Crooke RM: Antisense oligonucleotides as therapeutics for hyperlipidaemias. Expert Opin Biol Ther 2005, 5:907–917.

    Article  CAS  PubMed  Google Scholar 

  30. • Yu RZ, Kim TW, Hong A, et al.: Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab Dispos 2007, 35:460–468. This study provides evidence that ASOs quickly distribute to peripheral tissues, including the liver, but not the central nervous system. Subcutaneous injection appears to be an effective method for ASO delivery.

  31. Yu RZ, Lemonidis KM, Graham MJ, et al.: Cross-species comparison of in vivo PK/PD relationships for second-generation antisense oligonucleotides targeting apolipoprotein B-100. Biochem Pharmacol 2009, 77:910–919.

    Article  CAS  PubMed  Google Scholar 

  32. Crooke RM, Graham MJ, Lemonidis KM, et al.: An apolipoprotein B antisense oligonucleotide lowers LDL cholesterol in hyperlipidemic mice without causing hepatic steatosis. J Lipid Res 2005, 46:872–884.

    Article  CAS  PubMed  Google Scholar 

  33. Preiss D, Sattar N: Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci (Lond) 2008, 115:141–150.

    Article  CAS  Google Scholar 

  34. Hirano K, Young SG, Farese RV Jr, et al.: Targeted disruption of the mouse apobec-1 gene abolishes apolipoprotein B mRNA editing and eliminates apolipoprotein B48. J Biol Chem 1996, 271:9887–9890.

    Article  CAS  PubMed  Google Scholar 

  35. Mullick AE, Graham MJ, Crooke RM: Antisense inhibition of apolipoprotein b ameliorated diet-induced hypercholesterolemia and reduced atherosclerosis in ldl receptor-deficient mice. Presented at Arteriosclerosis, Thrombosis and Vascular Biology Annual Conference 2008. Atlanta, GA; April 16–18, 2008.

  36. Merki E, Graham MJ, Mullick AE, et al.: Antisense oligonucleotide directed to human apolipoprotein B-100 reduces lipoprotein(a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein(a) transgenic mice. Circulation 2008, 118:743–753.

    Article  CAS  PubMed  Google Scholar 

  37. ClinicalTrials.gov: Available at http://www.clinicaltrials.gov/ct2/results?term=301012. Accessed September 15, 2009.

  38. Update from Mipomersen extended dosing study continues to show that Mipomersen is well tolerated and maintains activity in patients treated for up to 16 months [press release]. Carlsbad, CA: Isis Pharmaceuticals; April 14, 2008.

  39. 25 Percent LDL-C reduction in very high-risk patient population [press release]. Carlsbad, CA: Isis Pharmaceuticals; May 20, 2009.

  40. Kastelein JJ, Wedel MK, Baker BF, et al.: Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. Circulation 2006, 114:1729–1735.

    Article  CAS  PubMed  Google Scholar 

  41. Isis reports new data for Mipomersen in routine high cholesterol patients and provides cumulative safety summary [press release]. Carlsbad, CA: Isis Pharmaceuticals; Nov 13, 2007.

  42. Yu RZ, Geary RS, Flaim JD, et al.: Lack of pharmacokinetic interaction of mipomersen sodium (ISIS 301012), a 2′-O-methoxyethyl modified antisense oligonucleotide targeting apolipoprotein B-100 messenger RNA, with simvastatin and ezetimibe. Clin Pharmacokinet 2009, 48:39–50.

    Article  CAS  PubMed  Google Scholar 

  43. Khoo B, Roca X, Chew SL, et al.: Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB. BMC Mol Biol 2007, 8:3.

    Article  PubMed  Google Scholar 

  44. Soutschek J, Akinc A, Bramlage B, et al.: Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004, 432:173–178.

    Article  CAS  PubMed  Google Scholar 

  45. Nishina K, Unno T, Uno Y, et al.: Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol Ther 2008, 16:734–740.

    Article  CAS  PubMed  Google Scholar 

  46. Zimmermann TS, Lee AC, Akinc A, et al.: RNAi-mediated gene silencing in non-human primates. Nature 2006, 441:111–114.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Dr. Thomas has received materials from Isis to conduct studies of apoB and MTP antisense in mice. Dr. Ginsberg is an investigator in the Isis/Genzyme Multicenter Study of Mipomersen in Patients with Familial Hypercholesterolemia, and has received materials from Isis to conduct studies of apoB and MTP antisense in mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Ginsberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, T., Ginsberg, H. Development of Apolipoprotein B Antisense Molecules as a Therapy for Hyperlipidemia. Curr Atheroscler Rep 12, 58–65 (2010). https://doi.org/10.1007/s11883-009-0078-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-009-0078-7

Keywords

Navigation