Skip to main content

Advertisement

Log in

Mediators of ocular angiogenesis

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Angiogenesis is the formation of new blood vessels from pre-existing vasculature. Pathologic angiogenesis in the eye can lead to severe visual impairment. In our review, we discuss the roles of both pro-angiogenic and anti-angiogenic molecular players in corneal angiogenesis, proliferative diabetic retinopathy, exudative macular degeneration and retinopathy of prematurity, highlighting novel targets that have emerged over the past decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdiu O. and Van Setten G. 2008 Antiangiogenic activity in tears: presence of pigment-epithelium-derived factor. New insights and preliminary results. Ophthalmic Res. 40, 16–18.

    Article  PubMed  CAS  Google Scholar 

  • Adamis A. P. and Berman A. J. 2008 Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin. Immunopathol. 30, 65–84.

    Article  PubMed  CAS  Google Scholar 

  • Adamis A. P., Miller J. W., Bernal M. T., D’Amico D. J., Folkman J., Yeo T. K. et al. 1994 Increased vascular endothelial growth factor levels in the vitreous of eyes with diabetic retinopathy. Am. J. Ophthalmol. 118, 445–450.

    PubMed  CAS  Google Scholar 

  • Alon T., Hemo I., Itin A., Pe’er J., Stone J. and E. Keshet 1995 Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1, 1024–1028.

    Article  PubMed  CAS  Google Scholar 

  • Ambati B. K., Joussen A. M., Ambati J., Moromizato Y., Guha C., Javaherian K. et al. 2002 Angiostatin inhibits and regresses corneal neovascularization. Arch. Ophthalmol. 120, 1063–1068.

    PubMed  CAS  Google Scholar 

  • Ambati B. K., Anand A., Joussen A. M., Kuziel W. A., Adamis A. P. and Ambati J. 2003a Sustained inhibition of corneal neovascularization by genetic ablation of CCR5. Invest. Ophthalmol. Vis. Sci. 44, 590–593.

    Article  PubMed  Google Scholar 

  • Ambati B. K., Joussen A. M., Kuziel W. A., Adamis A. P. and Ambati J. 2003b Inhibition of corneal neovascularization by genetic ablation of CCR2. Cornea 22, 465–467.

    Article  PubMed  Google Scholar 

  • Ambati J., Anand A., Fernandez S., Sakurai E., Lynn B. C., Kuziel W. A. et al. 2003c An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2- deficient mice. Nat. Med. 9, 1390–1397.

    Article  PubMed  CAS  Google Scholar 

  • Ambati B. K., Nozaki M., Singh N., Takeda A., Jani P. D., Suthar T. et al. 2006 Corneal avascularity is due to soluble VEGF receptor-1. Nature 443, 993–997.

    Article  PubMed  CAS  Google Scholar 

  • Amin R., Puklin J. E. and Frank R. N. 1994 Growth factor localization in choroidal neovascular membranes of age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 35, 3178–3188.

    PubMed  CAS  Google Scholar 

  • Anand-Apte B., Pepper M. S., Voest E., Montesano R., Olsen B., Murphy G. et al. 1997 Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest. Ophthalmol. Vis. Sci. 38, 817–823.

    PubMed  CAS  Google Scholar 

  • Ando A., Yang A., Nambu H. and Campochiaro P. A. 2002 Blockade of nitric-oxide synthase reduces choroidal neovascularization. Mol. Pharmacol. 62, 539–544.

    Article  PubMed  CAS  Google Scholar 

  • Apte S. S., Mattei M. G. and Olsen B. R. 1994 Cloning of the cDNA encoding human tissue inhibitor of metalloproteinases-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22. Genomics 19, 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Apte R. S., Barreiro R. A., Duh E., Volpert O. and Ferguson T. A. 2004 Stimulation of neovascularization by the anti-angiogenic factor PEDF. Invest. Ophthalmol. Vis. Sci. 45, 4491–4497.

    Article  PubMed  Google Scholar 

  • Arden G. B., Sidman R. L., Arap W. and Schlingemann R. O. 2005 Spare the rod and spoil the eye. Br. J. Ophthalmol. 89, 764–769.

    Article  PubMed  CAS  Google Scholar 

  • Arjamaa O. and Nikinmaa M. 2006 Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp. Eye Res. 83, 473–483.

    Article  PubMed  CAS  Google Scholar 

  • Ashton N., Ward B. and Serpell G. 1954 Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. Br. J. Ophthalmol. 38, 397–432.

    Article  PubMed  CAS  Google Scholar 

  • Azar D. T. 2006 Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an American Ophthalmological Society thesis). Trans. Am. Ophthalmol. Soc. 104, 264–302.

    PubMed  Google Scholar 

  • Azar D. T., Hahn T.W., Jain S., Yeh Y. C. and Stetler-Stevensen W. G. 1996 Matrix metalloproteinases are expressed during wound healing after excimer laser keratectomy. Cornea 15, 18–24.

    Article  PubMed  CAS  Google Scholar 

  • Becerra S. P. and Amaral J. 2002 Erythropoietin — an endogenous retinal survival factor. N. Engl. J. Med. 347, 1968–1970.

    Article  PubMed  CAS  Google Scholar 

  • Beck Jr L. and D’Amore P. A. 1997 Vascular development: cellular and molecular regulation. FASEB J. 11, 365–373.

    PubMed  CAS  Google Scholar 

  • Beranek M., Kolar P., Tschoplova S., Kankova K. and Vasku A. 2008 Genetic variations and plasma levels of gelatinase A (matrix metalloproteinase-2) and gelatinase B (matrix metalloproteinase-9) in proliferative diabetic retinopathy. Mol. Vis. 14, 1114–1121.

    PubMed  CAS  Google Scholar 

  • Berglin L., Sarman S., van der Ploeg I., Steen B., Ming Y., Itohara S. et al. 2003 Reduced choroidal neovascular membrane formation in matrix metalloproteinase-2- deficient mice. Invest. Ophthalmol. Vis. Sci. 44, 403–408.

    Article  PubMed  Google Scholar 

  • Bhutto I. A., McLeod D. S., Hasegawa T., Kim S. Y., Merges C., Tong P. et al. 2006 Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration. Exp. Eye Res. 82, 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Bikfalvi A. and Han Z. C. 1994 Angiogenic factors are hematopoietic growth factors and vice versa. Leukemia 8, 523–529.

    PubMed  CAS  Google Scholar 

  • Blaauwgeers H. G., Holtkamp G. M., Rutten H., Witmer A. N., Koolwijk P., Partanen T. K. et al. 1999 Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am. J. Pathol. 155, 421–428.

    PubMed  CAS  Google Scholar 

  • Boehm B., Lang G., Feldmann B., Kurkhaus A., Rosinger S., Volpert O. et al. 2003 Proliferative diabetic retinopathy is associated with a low level of the natural ocular anti-angiogenic agent pigment epithelium-derived factor (PEDF) in aqueous humor. a pilot study. Horm. Metab. Res. 35, 382–386.

    Article  PubMed  CAS  Google Scholar 

  • Bojanowski C. M., Shen D., Chew E. Y., Ning B., Csaky K. G., Green W. R. et al. 2006 An apolipoprotein E variant may protect against age-related macular degeneration through cytokine regulation. Environ. Mol. Mutagen. 47, 594–602.

    Article  PubMed  CAS  Google Scholar 

  • Bora N. S., Kaliappan S., Jha P., Xu Q., Sohn J. H., Dhaulakhandi D. B. et al. 2006 Complement activation via alternative pathway is critical in the development of laser-induced choroidal neovascularization: role of factor B and factor H. J. Immunol. 177, 1872–1878.

    PubMed  CAS  Google Scholar 

  • Bora N. S., Kaliappan S., Jha P., Xu Q., Sivasankar B., Harris C. L. et al. 2007 CD59, a complement regulatory protein, controls choroidal neovascularization in a mouse model of wet-type age-related macular degeneration. J. Immunol. 178, 1783–1790.

    PubMed  CAS  Google Scholar 

  • Bora N. S., Jha P. and Bora P. S. 2008 The role of complement in ocular pathology. Semin. Immunopathol. 30, 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Brown M. S., Baron A. E., France E. K. and Hamman R. F. 2006 Association between higher cumulative doses of recombinant erythropoietin and risk for retinopathy of prematurity. J. AAPOS 10, 143–149.

    Article  PubMed  Google Scholar 

  • Browning A. C., Dua H. S. and Amoaku W. M. 2008 The effects of growth factors on the proliferation and in vitro angiogenesis of human macular inner choroidal endothelial cells. Br. J. Ophthalmol. 92, 1003–1008.

    Article  PubMed  CAS  Google Scholar 

  • Buraczynska M., Ksiazek P., Baranowicz-Gaszczyk I. and Jozwiak L. 2007 Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetes patients. Nephrol. Dial. Transplant. 22, 827–832.

    Article  PubMed  CAS  Google Scholar 

  • Burger P. C., Chandler D. B. and Klintworth G. K. 1983 Corneal neovascularization as studied by scanning electron microscopy of vascular casts. Lab. Invest. 48, 169–180.

    PubMed  CAS  Google Scholar 

  • Burger P. C., Chandler D. B. and Klintworth G. K. 1985 Experimental corneal neovascularization: biomicroscopic, angiographic, and morphologic correlation. Cornea 4, 35–41.

    Article  PubMed  Google Scholar 

  • Campochiaro P. A. 2004 Ocular neovascularisation and excessive vascular permeability. Expert Opin. Biol. Ther. 4, 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  • Campochiaro P. A. 2006 Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther. 13, 559–562.

    Article  PubMed  CAS  Google Scholar 

  • Cao R., Wu H. L., Veitonmaki N., Linden P., Farnebo J., Shi G. Y. et al. 1999 Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc. Natl. Acad. Sci. USA 96, 5728–5733.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P. 2003 Angiogenesis in health and disease. Nat. Med. 9, 653–660.

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P., Ferreira V., Breier G., Pollefeyt S., Kieckens L., Gertsenstein M. et al. 1996 Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Chan C. C., Shen D., Zhou M., Ross R. J., Ding X., Zhang K. et al. 2007 Human HtrA1 in the archived eyes with age-related macular degeneration. Trans. Am. Ophthalmol. Soc. 105, 92–97; discussion 97–98.

    PubMed  Google Scholar 

  • Chang J. H., Gabison E. E., Kato T. and Azar D. T. 2001 Corneal neovascularization. Curr. Opin. Ophthalmol. 12, 242–249.

    Article  PubMed  CAS  Google Scholar 

  • Chan-Ling T., Gock B. and Stone J. 1995 The effect of oxygen on vasoformative cell division. Evidence that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis. Invest. Ophthalmol. Vis. Sci. 36, 1201–1214.

    PubMed  CAS  Google Scholar 

  • Chen J. and Smith L. E. 2007 Retinopathy of prematurity. Angiogenesis 10, 133–140.

    Article  PubMed  Google Scholar 

  • Chen J., Hicks D., Brantley-Sieders D., Cheng N., McCollum G. W., Qiwerdich X. et al. 2006 Inhibition of retinal neovascularization by soluble EphA2 receptor. Exp. Eye. Res. 82, 664–673.

    Article  PubMed  CAS  Google Scholar 

  • Chen J., Connor K. M., Aderman C. M. and Smith L. E. 2008 Erythropoietin deficiency decreases vascular stability in mice. J. Clin. Invest. 118, 526–533.

    PubMed  CAS  Google Scholar 

  • Chen J., Connor K. M., Aderman C. M., Willett K. L., Aspegren O. P. and Smith L. E. 2009 Suppression of retinal neovascularization by erythropoietin siRNA in a mouse model of proliferative retinopathy. Invest. Ophthalmol. Vis. Sci. 50, 1329–1335.

    Article  PubMed  Google Scholar 

  • Cheung A. K., Fung M. K., Lo A. C., Lam T. T., So K. F., Chung S. S. et al. 2005 Aldose reductase deficiency prevents diabetes-induced blood-retinal barrier breakdown, apoptosis, and glial reactivation in the retina of db/db mice. Diabetes 54, 3119–3125.

    Article  PubMed  CAS  Google Scholar 

  • Chmielewska K., Robaszkiewicz J. and Kosatka M. 2008 Role of the retinal pigment epithelium (RPE) in the pathogenesis and treatment of diabetic macular edema (DME). Klin. Oczna 110, 318–320.

    PubMed  Google Scholar 

  • Churchill A. J., Carter J. G., Ramsden C., Turner S. J., Yeung A., Brenchley P. E. et al. 2008 VEGF polymorphisms are associated with severity of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 49, 3611–3616.

    Article  PubMed  Google Scholar 

  • Cohen M. P., Hud E., Shea E. and Shearman C. W. 2008 Vitreous fluid of db/db mice exhibits alterations in angiogenic and metabolic factors consistent with early diabetic retinopathy. Ophthalmic Res. 40, 5–9.

    Article  PubMed  CAS  Google Scholar 

  • Combadiere C., Feumi C., Raoul W., Keller N., Rodero M., Pezard A. et al. 2007 CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J. Clin. Invest. 117, 2920–2928.

    Article  PubMed  CAS  Google Scholar 

  • Conley Y. P., Jakobsdottir J., Mah T., Weeks D. E., Klein R., Kuller L. et al. 2006 CFH, ELOVL4, PLEKHA1 and LOC387715 genes and susceptibility to age-related maculopathy: AREDS and CHS cohorts and meta-analyses. Hum. Mol. Genet. 15, 3206–3218.

    Article  PubMed  CAS  Google Scholar 

  • Connor K. M., SanGiovanni J. P., Lofqvist C., Aderman C. M., Chen J., Higuchi A. et al. 2007 Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med. 13, 868–873.

    Article  PubMed  CAS  Google Scholar 

  • Crawford T. N., Alfaro D. V. 3rd, Kerrison J. B. and Jablon E. P. 2009 Diabetic retinopathy and angiogenesis. Curr. Diabetes Rev. 5, 8–13.

    Article  PubMed  CAS  Google Scholar 

  • Cross M. J. and Claesson-Welsh L. 2001 FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22, 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Cursiefen C., Kuchle M. and Naumann G. O. 1998 Angiogenesis in corneal diseases: histopathologic evaluation of 254 human corneal buttons with neovascularization. Cornea 17, 611–613.

    Article  PubMed  CAS  Google Scholar 

  • Dawson D.W., Volpert O. V., Gillis P., Crawford S. E., Xu H., Benedict W. et al. 1999 Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Demircan N., Safran B. G., Soylu M., Ozcan A. A. and Sizmaz S. 2006 Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye 20, 1366–1369.

    Article  PubMed  CAS  Google Scholar 

  • Despriet D. D., van Duijn C. M., Oostra B. A., Uitterlinden A. G., Hofman A., Wright F. et al. 2009 Complement component C3 and risk of age-related macular degeneration. Ophthalmology 116, 474–480; e472.

    Article  PubMed  Google Scholar 

  • Economopoulou M., Bdeir K., Cines D. B., Fogt F., Bdeir Y., Lubkowski J. et al. 2005 Inhibition of pathologic retinal neovascularization by alpha-defensins. Blood 106, 3831–3838.

    Article  PubMed  CAS  Google Scholar 

  • Edwards A. O., Chen D., Fridley B. L., James K. M., Wu Y., Abecasis G. et al. 2008 Toll-like receptor polymorphisms and age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 49, 1652–1659.

    Article  PubMed  Google Scholar 

  • Fang I. M., Yang C. H., Yang C. M. and Chen M. S. 2009 Comparative effects of fatty acids on proinflammatory gene cyclooxygenase 2 and inducible nitric oxide synthase expression in retinal pigment epithelial cells. Mol. Nutr. Food Res. 53, 739–750.

    Article  PubMed  CAS  Google Scholar 

  • Ferreras M., Felbor U., Lenhard T., Olsen B. R. and Delaisse J. 2000 Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett. 486, 247–251.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J. 1971 Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186.

    PubMed  CAS  Google Scholar 

  • Folkman J. 1995 Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31.

    Article  PubMed  CAS  Google Scholar 

  • Friedlander M., Brooks P. C., Shaffer R. W., Kincaid C. M., Varner J. A. and Cheresh A. 1995 Definition of two angiogenic pathways by distinct alpha v integrins. Science 270, 1500–1502.

    Article  PubMed  CAS  Google Scholar 

  • Friedlander M., Theesfeld C. L., Sugita M., Fruttiger M., Thomas M. A., Chang S. and Cheresh D. A. 1996 Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc. Natl. Acad. Sci. USA 93, 9764–9769.

    Article  PubMed  CAS  Google Scholar 

  • Fukumura D., Gohongi T., Kadambi A., Izumi Y., Ang J., Yun C. O. et al. 2001 Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl. Acad. Sci. USA 98, 2604–2609.

    Article  PubMed  CAS  Google Scholar 

  • Funatsu H., Yamashita H., Noma H., Mimura T., Nakamura S., Sakata K. et al. 2005 Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients. Graefes. Arch. Clin. Exp. Ophthalmol. 243, 3–8.

    Article  PubMed  CAS  Google Scholar 

  • Gao G., Li Y., Zhang D., Gee S., Crosson C. and Ma J. 2001 Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett. 489, 270–276.

    Article  PubMed  CAS  Google Scholar 

  • Gerritsen M. E., Soriano R., Yang S., Zlot C., Ingle G., Toy K. et al. 2003 Branching out: a molecular fingerprint of endothelial differentiation into tube-like structures generated by Affymetrix oligonucleotide arrays. Microcirculation 10, 63–81.

    PubMed  CAS  Google Scholar 

  • Gold B., Merriam J. E., Zernant J., Hancox L. S., Taiber A. J., Gehrs K. et al. 2006 Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat. Genet. 38, 458–462.

    Article  PubMed  CAS  Google Scholar 

  • Grant M. B., Afzal A., Spoerri P., Pan H., Shaw L. C. and Mames R. N. 2004 The role of growth factors in the pathogenesis of diabetic retinopathy. Expert Opin. Investig. Drugs 13, 1275–1293.

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus H. E., Ling J. X., Wallace T. M., Dithmar S., Lawson D.H., Cohen C. et al. 2002 Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol. Vis. 8, 119–126.

    PubMed  CAS  Google Scholar 

  • Guo L., Hussain A. A., Limb G. A. and Marshall J. 1999 Agedependent variation in metalloproteinase activity of isolated human Bruch’s membrane and choroid. Invest. Ophthalmol. Vis. Sci. 40, 2676–2682.

    PubMed  CAS  Google Scholar 

  • Gupta N., Brown K. E. and Milam A. H. 2003 Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp. Eye Res. 76, 463–471.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D. and Folkman J. 1996 Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364.

    Article  PubMed  CAS  Google Scholar 

  • Hangai M., Moon Y. S., Kitaya N., Chan C. K., Wu D. Y., Peters K. G. et al. 2001 Systemically expressed soluble Tie2 inhibits intraocular neovascularization. Hum. Gene. Ther. 12, 1311–1321.

    Article  PubMed  CAS  Google Scholar 

  • Hattenbach L. O., Falk B., Nurnberger F., Koch F. H. and Ohrloff C. 2002 Detection of inducible nitric oxide synthase and vascular endothelial growth factor in choroidal neovascular membranes. Ophthalmologica 216, 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom A., Perruzzi C., Ju M., Engstrom E., Hard A. L., Liu J. L. et al. 2001 Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc. Natl. Acad. Sci. USA 98, 5804–5808.

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom A., Engstrom E., Hard A. L., Albertsson-Wikland K., Carlsson B., Niklasson A. et al. 2003 Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 112, 1016–1020.

    Article  PubMed  Google Scholar 

  • He T., Ai M., Zhao X. H. and Xing Y. Q. 2007 Inducible nitric oxide synthase mediates hypoxia-induced hypoxia-inducible factor-1 alpha activation and vascular endothelial growth factor expression in oxygen-induced retinopathy. Pathobiology 74, 336–343.

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka S., Kataoka Y., Nakao K., Nakamura K., Morikawa S., Tanaka S. et al. 2005 Vascular endothelial growth factor A (VEGF-A) is involved in guidance of VEGF receptor-positive cells to the anterior portion of early embryos. Mol. Cell Biol. 25, 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann S., He S., Ehren M., Ryan S. J., Wiedemann P. and Tanaka S. et al. 2006 MMP-2 and MMP-9 secretion by rpe is stimulated by angiogenic molecules found in choroidal neovascular membranes. Retina 26, 454–461.

    Article  PubMed  Google Scholar 

  • Holekamp N. M., Bouck N. and Volpert O. 2002 Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am. J. Ophthalmol. 134, 220–227.

    Article  PubMed  CAS  Google Scholar 

  • Honda S., Nagai T. and Negi A. 2009 Anti-angiogenic effects of non-peptide integrin alphavbeta3 specific antagonist on laserinduced choroidal neovascularization in mice. Graefes Arch. Clin. Exp. Ophthalmol. 247, 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Hughes S., Yang H. and Chan-Ling T. 2000 Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest. Ophthalmol. Vis. Sci. 41, 1217–1228.

    PubMed  CAS  Google Scholar 

  • Hughes J. M., Kuiper E. J., Klaassen I., Canning P., Stitt A. W., Van Bezu J. et al. 2007 Advanced glycation and products casue increased CCN family and extracellular matrix gene expression in the diabetic rodent retina. Diabetologia 50, 1089–1098.

    Article  PubMed  CAS  Google Scholar 

  • Hutchings H., Maitre-Boube M., Tombran-Tink J. and Plouet J. 2002 Pigment epithelium-derived factor exerts opposite effects on endothelial cells of different phenotypes. Biochem. Biophys. Res. Commun. 294, 764–769.

    Article  PubMed  CAS  Google Scholar 

  • Iizuka H., Awata T., Osaki M., Neda T., Kurihara S., Inoue K. et al. 2007 Promoter polymorphisms of the pigment epithelium-derived factor gene are associated with diabetic retinopathy. Biochem. Biophys. Res. Commun. 361, 421–426.

    Article  PubMed  CAS  Google Scholar 

  • Iliaki E., Poulaki V., Mitsiades N., Mitsiades C. S., Miller J. W. and Gragoudas E. S. 2009 Role of {alpha}4 integrin (cd49d) in the pathogenesis of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 50, 4890–4904.

    Article  Google Scholar 

  • Ishida S. 2009 Lifestyle-related diseases and anti-aging ophthalmology: suppression of retinal and choroidal pathologies by inhibiting renin-angiotensin system and inflammation. Nippon Ganka Gakkai Zasshi 113, 403–423.

    PubMed  CAS  Google Scholar 

  • Isner J. M. and Asahara T. 1999 Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J. Clin. Invest. 103, 1231–1236.

    Article  PubMed  CAS  Google Scholar 

  • Itoh N. and Ornitz D. M. 2004 Evolution of the Fgf and Fgfr gene families. Trends Genet. 20, 563–569.

    Article  PubMed  CAS  Google Scholar 

  • Itoh T., Tanioka M., Yoshida H., Yoshioka T., Nishimoto H. and Itohara S. 1998 Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 58, 1048–1051.

    PubMed  CAS  Google Scholar 

  • Jani P. D., Singh N., Jenkins C., Raghava S., Mo Y., Amin S. et al. 2007 Nanoparticles sustain expression of Flt intraceptors in the cornea and inhibit injury-induced corneal angiogenesis. Invest. Ophthalmol. Vis. Sci. 48, 2030–2036.

    Article  PubMed  Google Scholar 

  • Jaquet K., Krause K., Tawakol-Khodai M., Geidel S. and Kuck K. H. 2002 Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc. Res. 64, 326–333.

    Article  PubMed  CAS  Google Scholar 

  • Jiang J., Xia X. B., Xu H. Z., Xiong Y., Song W. T., Xiong S. Q. et al. 2009 Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1alpha and VEGF. J. Cell. Physiol. 218, 66–74.

    Article  PubMed  CAS  Google Scholar 

  • Jones C. A., London N. R., Chen H., Park K. W., Sauvaget D., Stockton R. A. et al. 2008 Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat. Med. 14, 448–453.

    Article  PubMed  CAS  Google Scholar 

  • Kadonosono K., Yazama F., Itoh N., Sawada H. and Ohno S. 1999 Expression of matrix metalloproteinase-7 in choroidal neovascular membranes in age-related macular degeneration. Am. J. Ophthalmol. 128, 382–384.

    Article  PubMed  CAS  Google Scholar 

  • Kamei M. and Hollyfield J. G. 1999 TIMP-3 in Bruch’s membrane: changes during aging and in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 40, 2367–2375.

    PubMed  CAS  Google Scholar 

  • Kaneko T., Fujii S., Matsumoto A., Goto D., Ishimori N., Watano K. et al. 2002 Induction of plasminogen activator inhibitor-1 in endothelial cells by basic fibroblast growth factor and its modulation by fibric acid. Arterioscler. Thromb. Vasc. Biol. 22, 855–860.

    Article  PubMed  CAS  Google Scholar 

  • Karakousis P. C., John S. K., Behling K. C., Surace E. M., Smith J. E., Hendrickson A. et al. 2001 Localization of pigment epithelium derived factor (PEDF) in developing and adult human ocular tissues. Mol. Vis. 7, 154–163.

    PubMed  CAS  Google Scholar 

  • Keck P. J., Hauser S. D., Krivi G., Sanzo K., Warren T., Feder J. et al. 1989 Vascular permeability factor, an endothelial cellmitogen related to PDGF. Science 246, 1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Kern T. S. 2007 Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp. Diabetes Res. 2007, 95103.

    PubMed  Google Scholar 

  • Kim I., Moon S. O., Park S. K., Chae S. W. and Koh G. Y. 2001 Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ. Res. 89, 477–479.

    Article  PubMed  CAS  Google Scholar 

  • Kim J. H., Yu Y. S., Cho C. S. and Kim K. W. 2009 Blockade of angiotensin II attenuates VEGF-mediated blood-retinal barrier breakdown in diabetic retinopathy. J. Cereb. Blood Flow Metab. 29, 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Kita T., Hata Y., Miura M., Kawahara S., Nakao S. and Ishibashi T. 2007 Functional characteristics of connective tissue growth factor on vitreoretinal cells. Diabetes 56, 1421–1428.

    Article  PubMed  CAS  Google Scholar 

  • Kitaoka T., Morse L. S., Schneeberger S., Ishigooka H. and Hjelmeland L. M. 1997 Expression of FGF5 in choroidal neovascular membranes associated with ARMD. Curr. Eye Res. 16, 396–399.

    Article  PubMed  CAS  Google Scholar 

  • Klein R. J., Zeiss C., Chew E. Y., Tsai J. Y., Sackler R. S., Haynes C. et al. 2005 Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Klein S., Giancotti F. G., Presta M., Albelda S. M., Buck C. A. and Rifkin D. B. 1993 Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol. Biol. Cell 4, 973–982.

    PubMed  CAS  Google Scholar 

  • Kleinman M. E., Yamada K., Takeda A., Chandrasekaran V., Nozaki M., Baffi J. Z. et al. 2008 Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591–597.

    Article  PubMed  CAS  Google Scholar 

  • Krantz S. B. 1991 Erythropoietin. Blood 77, 419–434.

    PubMed  CAS  Google Scholar 

  • Kuiper E. J., Van Nieuwenhoven F. A., de Smet M. D., van Meurs J. C., Tanck M. W., Oliver N. et al. 2008 The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic retinopathy. PLoS One 3, e2675.

    Article  PubMed  CAS  Google Scholar 

  • Kvanta A. 2006 Ocular angiogenesis: the role of growth factors. Acta Ophthalmol. Scand 84, 282–288.

    Article  PubMed  CAS  Google Scholar 

  • Kvanta A., Shen W. Y., Sarman S., Seregard S., Steen B. and Rakoczy E. 2000 Matrix metalloproteinase (MMP) expression in experimental choroidal neovascularization. Curr. Eye Res. 21, 684–690.

    PubMed  CAS  Google Scholar 

  • Langford K., Nicolaides K. and Miell J. P. 1998 Maternal and fetal insulin-like growth factors and their binding proteins in the second and third trimesters of human pregnancy. Hum. Reprod. 13, 1389–1393.

    Article  PubMed  CAS  Google Scholar 

  • Lee P., Wang C. C. and Adamis A. P. 1998 Ocular neovascularization: an epidemiologic review. Surv. Ophthalmol. 43, 245–269.

    Article  PubMed  CAS  Google Scholar 

  • Lee P. C., Kibbe M. R., Schuchert M. J., Stolz D. B., Watkins S. C., Griffith B. P. et al. 2000 Nitric oxide induces angiogenesis and upregulates alpha(v)beta(3) integrin expression on endothelial cells. Microvasc. Res. 60, 269–280.

    Article  PubMed  CAS  Google Scholar 

  • Leung D.W., Cachianes G., Kuang W. J., Goeddel D. V. and Ferrara N. 1989 Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309.

    Article  PubMed  CAS  Google Scholar 

  • Lin H. C., Chang J. H., Jain S., Gabison E. E., Kure T., Kato T. et al. 2001 Matrilysin cleavage of corneal collagen type XVIII NC1 domain and generation of a 28-kDa fragment. Invest. Ophthalmol. Vis. Sci. 42, 2517–2524.

    PubMed  CAS  Google Scholar 

  • Lin J. M., Wan L., Tsai Y. Y., Lin H. J., Tsai Y., Lee C. C. et al. 2008 Pigment epithelium-derived factor gene Met72Thr polymorphism is associated with increased risk of wet age-related macular degeneration. Am. J. Ophthalmol. 145, 716–721.

    Article  PubMed  CAS  Google Scholar 

  • Lip P. L., Chatterjee S., Caine G. J., Hope-Ross M., Gibson J., Blann A. D. et al. 2004 Plasma vascular endothelial growth factor, angiopoietin-2, and soluble angiopoietin receptor Tie-2 in diabetic retinopathy: effects of laser photocoagulation and angiotensin receptor blockade. Br. J. Ophthalmol. 88, 1543–1546.

    Article  PubMed  CAS  Google Scholar 

  • Liu J., Lin T. H., Cole A. G., Wen R., Zhao L., Brescia M. R. et al. 2008 Identification and characterization of small-molecule inhibitors of Tie2 kinase. FEBS Lett. 582, 785–791.

    Article  PubMed  CAS  Google Scholar 

  • Lommatzsch A., Hermans P., Muller K. D., Bornfeld N., Bird A. C. and Pauleikhoff D. 2008 Are low inflammatory reactions involved in exudative age-related macular degeneration? Morphological and immunhistochemical analysis of AMD associated with basal deposits. Graefes Arch. Clin. Exp. Ophthalmol. 246, 803–810.

    Article  PubMed  CAS  Google Scholar 

  • Lu P. C., Ye H., Maeda M. and Azar D. T. 1999 Immunolocalization and gene expression of matrilysin during corneal wound healing. Invest. Ophthalmol. Vis. Sci. 40, 20–27.

    PubMed  CAS  Google Scholar 

  • Lukiw W. J. and N. G. Bazan 2008 Docosahexaenoic acid and the aging brain. J. Nutr. 138, 2510–2514.

    Article  PubMed  CAS  Google Scholar 

  • Madan A. and Penn J. S. 2003 Animal models of oxygen-induced retinopathy. Front. Biosci. 8, 1030–1043.

    Article  Google Scholar 

  • Maeda M., Vanlandingham B. D., Ye H., Lu P. C. and Azar D. T. 1998 Immunoconfocal localization of gelatinase B expressed by migrating intrastromal epithelial cells after deep annular excimer keratectomy. Curr. Eye Res. 17, 836–843.

    Article  PubMed  CAS  Google Scholar 

  • Mahabeleshwar G. H., Feng W., Phillips D. R. and Byzova T. V. 2006 Integrin signalling is critical for pathological angiogenesis. J. Exp. Med. 203, 2495–2507.

    Article  PubMed  CAS  Google Scholar 

  • Malik R. A., Li C., Aziz W., Olson J. A., Vohra A., McHardy K. C. et al. 2005 Elevated plasma CD105 and vitreous VEGF levels in diabetic retinopathy. J. Cell Mol. Med. 9, 692–697.

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga N., Chikaraishi Y., Izuta H., Ogata N., Shimazawa M., Matsumura M. et al. 2008 Role of soluble vascular endothelial growth factor receptor-1 in the vitreous in proliferative diabetic retinopathy. Ophthalmology 115, 1916–1922.

    Article  PubMed  Google Scholar 

  • Matsushima M., Ogata N., Takada Y., Tobe T., Yamada H., Takahashi K. et al. 1996 FGF receptor 1 expression in experimental choroidal neovascularization. Jpn. J. Ophthalmol. 40, 329–338.

    PubMed  CAS  Google Scholar 

  • Mattila M. M., Ruohola J. K., Valve E.M., Tasanen M. J., Seppanen J. A. and Harkonen L. 2001 FGF-8b increases angiogenic capacity and tumor growth of androgen-regulated S115 breast cancer cells. Oncogene 20, 2791–2804.

    Article  PubMed  CAS  Google Scholar 

  • McKay G. J., Silvestri G., Patterson C. C., Hogg R. E., Chakravarthy U. and A. E. Hughes 2009 Further assessment of the complement component 2 and factor B region associated with agerelated macular degeneration. Invest. Ophthalmol. Vis. Sci. 50, 533–539.

    Article  PubMed  Google Scholar 

  • McLeod D. S., Taomoto M., Cao J., Zhu Z., Witte L. and Lutty G. A. 2002 Localization of VEGF receptor2 (KDR/Flk1) and effects of blocking it in oxygeninduced retinopathy. Invest. Ophthalmol. Vis. Sci. 43, 474–482.

    PubMed  Google Scholar 

  • Meleth A. D., Agron E., Chan C. C., Reed G. F., Arora K., Byrnes G. et al. 2005 Serum inflammatory markers in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 46, 4295–4301.

    Article  PubMed  Google Scholar 

  • Mignatti P. and Rifkin D. B. 2000 Nonenzymatic interactions between proteinases and the cell surface: novel roles in normal and malignant cell physiology. Adv. Cancer Res. 78, 103–157.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto K., Khosrof S., Bursell S. E., Moromizato Y., Aiello L. P., Ogura Y. et al. 2000 Vascular endothelial growth factor (VEGF)induced retinal vascular permeability is mediated by intercellular adhesion molecule1 (ICAM1). Am. J. Pathol. 156, 1733–1739.

    PubMed  CAS  Google Scholar 

  • Morello C. M. 2007 Etiology and natural history of diabetic retinopathy: an overview. Am. J. Health Syst. Pharm. 64,suppl. 12, S3–S7.

    Article  PubMed  Google Scholar 

  • Mori K., Duh E., Gehlbach P., Ando A., Takahashi K., Pearlman J. et al. 2001 Pigment epitheliumderived factor inhibits retinal and choroidal neovascularization. J. Cell Physiol. 188, 253–263.

    Article  PubMed  CAS  Google Scholar 

  • Mori K., Gehlbach P., Ando A., McVey D., Wei L. and Campochiaro P. A. 2002 Regression of ocular neovascularization in response to increased expression of pigment epitheliumderived factor. Invest. Ophthalmol. Vis. Sci. 43, 2428–2434.

    PubMed  Google Scholar 

  • Morita M., Ohneda O., Yamashita T., Takahashi S., Suzuki N., Nakajima O. et al. 2003 HLF/HIF2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J. 22, 1134–1146.

    Article  PubMed  CAS  Google Scholar 

  • Moussad E. E. and Brigstock D. R. 2000 Connective tissue growth factor. What’s in a name? Mol. Genet. Metab. 71, 276–292.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P. K., Chawla A., Loayza M. S. and Bazan N. G. 2007 Docosanoids are multifunctional regulators of neural cell integrity and fate: significance in aging and disease. Prostaglandins Leukot. Essent. Fatty Acids 77, 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Mullins R. F., Russell S. R., Anderson D. H. and Hageman G. S. 2000 Drusen associated with aging and agerelated macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 14, 835–846.

    PubMed  CAS  Google Scholar 

  • Murata T., Nakagawa K., Khalil A., Ishibashi T., Inomata H. and Sueishi K. 1996 The temporal and spatial vascular endothelial growth factor expression in retinal vasculogenesis of rat neonates. Lab. Invest. 74, 68–77.

    PubMed  CAS  Google Scholar 

  • Murugeswari P., Shukla D., Rajendran A., Kim R., Namperumalsamy P. and Muthukkaruppan V. 2008 Proinflammatory cytokines and angiogenic and antiangiogenic factors in vitreous of patients with proliferative diabetic retinopathy and eales’ disease. Retina 28, 817–824.

    Article  PubMed  Google Scholar 

  • Naduk-Kik J. and Hrabec E. 2008 The role of matrix metalloproteinases in the pathogenesis of diabetes mellitus and progression of diabetes retinopathy. Postepy Hig. Med. Dosw. 62, 442–450.

    Google Scholar 

  • Nagineni C. N., Samuel W., Nagineni S., Pardhasaradhi K., Wiggert B., Detrick B. et al. 2003 Transforming growth factorbeta induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: involvement of mitogenactivated protein kinases. J. Cell Physiol. 197, 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Nakai K., Fainaru O., Bazinet L., Pakneshan P., Benny O., Pravda E. et al. 2008 Dendritic cells augment choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 49, 3666–3670.

    Article  PubMed  Google Scholar 

  • Nakamura S., Iwasaki N., Funatsu H., Kitano S. and Iwamoto Y. 2009 Impact of variants in the VEGF gene on progression of proliferative diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 247, 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Nambu H., Nambu R., Oshima Y., Hackett S. F., Okoye G., Wiegand S. et al. 2004 Angiopoietin 1 inhibits ocular neovascularization and breakdown of the blood retinal barrier. Gene Ther. 11, 865–873.

    Article  PubMed  CAS  Google Scholar 

  • Nambu H., Umeda N., Kachi S., Oshima Y., Akiyama H., Nambu R. et al. 2005 Angiopoietin 1 prevents retinal detachment in an aggressive model of proliferative retinopathy, but has no effect on established neovascularization. J. Cell Physiol. 204, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Nozaki M., Raisler B. J., Sakurai E., Sarma J. V., Barnum S. R., Lambris J. D. et al. 2006 Drusen complement components C3a and C5a promote choroidal neovascularization. Proc. Natl. Acad. Sci. USA 103, 2328–2333.

    Article  PubMed  CAS  Google Scholar 

  • Ogata N., Matsuoka M., Matsuyama K., Shima C., Tajika A., Nishiyama T. et al. 2007 Plasma concentration of pigment epitheliumderived factor in patients with diabetic retinopathy. J. Clin. Endocrinol. Metab. 92, 1176–1179.

    Article  PubMed  CAS  Google Scholar 

  • Ogata N., Nishikawa M., Nishimura T., Mitsuma Y. and Matsumura M. 2002a Unbalanced vitreous levels of pigment epitheliumderived factor and vascular endothelial growth factor in diabetic retinopathy. Am. J. Ophthalmol. 134, 348–353.

    Article  PubMed  CAS  Google Scholar 

  • Ogata N., Wada M., Otsuji T., Jo N., TombranTink J. and Matsumura M. 2002b Expression of pigment epitheliumderived factor in normal adult rat eye and experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 43, 1168–1175.

    PubMed  Google Scholar 

  • Ohlmann A. V., Ohlmann A., WelgeLussen U. and May C. A. 2005 Localization of collagen XVIII and endostatin in the human eye. Curr. Eye Res. 30, 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Ohno-Matsui K., Morita I., Tombran-Tink J., Mrazek D., Onodera M., Uetama T. et al. 2001 Novel mechanism for agerelated macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J. Cell Physiol. 189, 323–333.

    Article  PubMed  CAS  Google Scholar 

  • Ohno-Matsui K., Yoshida T., Uetama T., Mochizuki M. and Morita I. 2003 Vascular endothelial growth factor upregulates pigment epitheliumderived factor expression via VEGFR1 in human retinal pigment epithelial cells. Biochem. Biophys. Res. Commun. 303, 962–967.

    Article  PubMed  CAS  Google Scholar 

  • Oka C., Tsujimoto R., Kajikawa M., KoshibaTakeuchi K., Ina J., Yano M. et al. 2004 HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development 131, 1041–1053.

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly M. S., Holmgren L., Shing Y., Chen C., Rosenthal R. A., Cao Y. et al. 1994a Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spr. Harb. Symp. Quant. Biol. 59, 471–482.

    Google Scholar 

  • O’Reilly M. S., Holmgren L., Shing Y., Chen C., Rosenthal R. A., Moses M. et al. 1994b Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328.

    Article  PubMed  Google Scholar 

  • O’Reilly M. S., Boehm T., Shing Y., Fukai N., Vasios G., Lane W. S. et al. 1997 Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.

    Article  PubMed  Google Scholar 

  • O’Reilly M. S., Wiederschain D., StetlerStevenson W. G., Folkman J. and Moses M. A. 1999 Regulation of angiostatin production by matrix metalloproteinase2 in a model of concomitant resistance. J. Biol. Chem. 274, 29568–295671.

    Article  PubMed  Google Scholar 

  • Ortego J., Escribano J., Becerra S. P. and CocaPrados M. 1996 Gene expression of the neurotrophic pigment epitheliumderived factor in the human ciliary epithelium. Synthesis and secretion into the aqueous humor. Invest. Ophthalmol. Vis. Sci. 37, 2759–2767.

    PubMed  CAS  Google Scholar 

  • Papapetropoulos A., Garcia-Cardena G., Madri J. A. and Sessa W. C. 1997 Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J. Clin. Invest. 100, 3131–3139.

    Article  PubMed  CAS  Google Scholar 

  • Park K.W., Morrison C. M., Sorensen L. K., Jones C. A., Rao Y., Chien C. B. et al. 2003 Robo4 is a vascularspecific receptor that inhibits endothelial migration. Dev. Biol. 261, 251–267.

    Article  PubMed  CAS  Google Scholar 

  • Patel J. I., Hykin P. G., Gregor Z. J., Boulton M. and Cree I. A. 2005 Angiopoietin concentrations in diabetic retinopathy. Br. J. Ophthalmol. 89, 480–483.

    Article  PubMed  CAS  Google Scholar 

  • Patel M. and Chan C. C. 2008 Immunopathological aspects of agerelated macular degeneration. Semin Immunopathol 30, 97–110.

    Article  PubMed  Google Scholar 

  • Patel J. I., TombranTink J., Hykin P. G., Gregor Z. J. and Cree I. A. 2006 Vitreous and aqueous concentrations of proangiogenic, antiangiogenic factors and other cytokines in diabetic retinopathy patients with macular edema: Implications for structural differences in macular profiles. Exp. Eye Res. 82, 798–806.

    Article  PubMed  CAS  Google Scholar 

  • Patel S., Rowe M. J., Winters S. A. and Ohls R. K. 2008 Elevated erythropoietin mRNA and protein concentrations in the developing human eye. Pediatr. Res. 63, 394–397.

    Article  PubMed  CAS  Google Scholar 

  • Paulus Y. M. and Gariano R. F. 2009 Diabetic retinopathy: a growing concern in an aging population. Geriatrics 64, 16–20.

    PubMed  Google Scholar 

  • Pelikanova T. 2007 Pathogenesis of diabetic retinopathy. Vnitr. Lek. 53, 498–505.

    PubMed  CAS  Google Scholar 

  • Penfold P. L., Provis J. M. and Billson F. A. 1987 Agerelated macular degeneration: ultrastructural studies of the relationship of leucocytes to angiogenesis. Graefes Arch. Clin. Exp. Ophthalmol. 225, 70–76.

    Article  PubMed  CAS  Google Scholar 

  • Penn J. S., Madan A., Caldwell R. B., Bartoli M., Caldwell R. W. and Hartnett M. E. 2008 Vascular endothelial growth factor in eye disease. Prog. Retin Eye Res. 27, 331–371.

    Article  PubMed  CAS  Google Scholar 

  • Peters K. G. 1998 Vascular endothelial growth factor and the angiopoietins: working together to build a better blood vessel. Circ. Res. 83, 342–343.

    PubMed  CAS  Google Scholar 

  • Pierce E. A., Avery R. L., Foley E. D., Aiello L. P. and Smith L. E. 1995 Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc. Natl. Acad. Sci. USA 92, 905–909.

    Article  PubMed  CAS  Google Scholar 

  • Pierce E. A., Foley E. D. and Smith L. E. 1996 Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity. Arch. Ophthalmol. 114, 1219–1228.

    PubMed  CAS  Google Scholar 

  • Plantner J. J., Jiang C. Smine A. 1998 Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration. Exp. Eye Res. 67, 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Poulaki V., Joussen A.M., Mitsiades N., Mitsiades C. S., Iliaki E. F. and Adamis A. P. 2004 Insulinlike growth factorI plays a pathogenetic role in diabetic retinopathy. Am. J. Pathol. 165, 457–469.

    PubMed  CAS  Google Scholar 

  • Presta M., Tiberio L., Rusnati M., Dell’Era P. and Ragnotti G. 1991 Basic fibroblast growth factor requires a longlasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells. Cell Regul. 2, 719–726.

    PubMed  CAS  Google Scholar 

  • Presta M., Dell’Era P., Mitola S., Moroni E., Ronca R. and Rusnati M. 2005 Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16, 159–178.

    Article  PubMed  CAS  Google Scholar 

  • Presta M., Andres G., Leali D., Dell’era P. and Ronca R. 2009 In-flammatory cells and chemokines sustain FGF2induced angiogenesis. Eur. Cytokine Netw. 20, 39–50.

    PubMed  CAS  Google Scholar 

  • Prosser B. E., Johnson S., Roversi P., Herbert A. P., Blaum B. S., Tyrrell J. et al. 2007 Structural basis for complement factor H linked agerelated macular degeneration. J. Exp. Med. 204, 2277–2283.

    Article  PubMed  CAS  Google Scholar 

  • Ray D., Mishra M., Ralph S., Read I., Davies R. and Brenchley P. 2004 Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes 53, 861–864.

    Article  PubMed  CAS  Google Scholar 

  • Renno R. Z., Youssri A. I., Michaud N., Gragoudas E. S. and Miller J. W. 2002 Expression of pigment epitheliumderived factor in experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 43, 1574–1580.

    PubMed  Google Scholar 

  • Roberts W. G. and Palade G. E. 1995 Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108, 2369–2379.

    PubMed  CAS  Google Scholar 

  • Rosenthal R., Malek G., Salomon N., PeillMeininghaus M., Coeppicus L., Wohlleben H. et al. 2005 The fibroblast growth factor receptors, FGFR1 and FGFR2, mediate two independent signalling pathways in human retinal pigment epithelial cells. Biochem. Biophys. Res. Commun. 337, 241–247.

    Article  PubMed  CAS  Google Scholar 

  • Ross R. J., Bojanowski C. M., Wang J. J., Chew E. Y., Rochtchina E., Ferris F. L. 3rd et al. 2007 The LOC387715 polymorphism and agerelated macular degeneration: replication in three casecontrol samples. Invest. Ophthalmol. Vis. Sci. 48, 1128–1132.

    Article  PubMed  Google Scholar 

  • Rousseau B., Dubayle D., Sennlaub F., Jeanny J. C., Costet P., Bikfalvi A. et al. 2000 Neural and angiogenic defects in eyes of transgenic mice expressing a dominantnegative FGF receptor in the pigmented cells. Exp. Eye Res. 71, 395–404.

    Article  PubMed  CAS  Google Scholar 

  • Ruberte J., Ayuso E., Navarro M., Carretero A., Nacher V., Haurigot V. et al. 2004 Increased ocular levels of IGF1 in transgenic mice lead to diabeteslike eye disease. J. Clin. Invest. 113, 1149–1157.

    PubMed  CAS  Google Scholar 

  • Sack R. A., Beaton A. R. and Sathe S. 1999 Diurnal variations in angiostatin in human tear fluid: a possible role in prevention of corneal neovascularization. Curr. Eye Res. 18, 186–193.

    Article  PubMed  CAS  Google Scholar 

  • Saishin Y., Silva R. L., Kachi S., Aslam S., Gong Y. Y., Lai H. et al. 2005 Periocular gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization in a human-sized eye. Hum. Gene. Ther. 16, 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai E., Anand A., Ambati B. K., van Rooijen N. and Ambati J. 2003a Macrophage depletion inhibits experimental choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44, 3578–3585.

    Article  PubMed  Google Scholar 

  • Sakurai E., Taguchi H., Anand A., Ambati B. K., Gragoudas E. S., Miller J. W. et al. 2003b Targeted disruption of the CD18 or ICAM1 gene inhibits choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 44, 2743–2749.

    Article  PubMed  Google Scholar 

  • Sakurai Y., Ohgimoto K., Kataoka Y., Yoshida N. and Shibuya M. 2005 Essential role of Flk1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl. Acad. Sci. USA 102, 1076–1081.

    Article  PubMed  CAS  Google Scholar 

  • Sall J.W., Klisovic D. D., O’Dorisio M. S. and Katz S. E. 2004 Somatostatin inhibits IGF1 mediated induction of VEGF in human retinal pigment epithelial cells. Exp. Eye Res. 79, 465–476.

    Article  PubMed  CAS  Google Scholar 

  • Sarlos S., Rizkalla B., Moravski C. J., Cao Z., Cooper M. E. and WilkinsonBerka J. L. 2003 Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin. Am. J. Pathol. 163, 879–887.

    PubMed  CAS  Google Scholar 

  • Sato T., Kusaka S., Shimojo H. and Fujikado T. 2009 Vitreous Levels of Erythropoietin and Vascular Endothelial Growth Factor in Eyes with Retinopathy of Prematurity. Ophthalmology 116, 1599–1603.

    Article  PubMed  Google Scholar 

  • Schneider J. K., Gardner D. K. and Cordero L. 2008 Use of recombinant human erythropoietin and risk of severe retinopathy in extremely lowbirthweight infants. Pharmacotherapy 28, 1335–1340.

    Article  PubMed  CAS  Google Scholar 

  • Schwesinger C., Yee C., Rohan R. M., Joussen A. M., Fernandez A., Meyer T. N. et al. 2001 Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am. J. Pathol. 158, 1161–1172.

    PubMed  CAS  Google Scholar 

  • Sears J. E., Hoppe G., Ebrahem Q. and AnandApte B. 2008 Prolyl hydroxylase inhibition during hyperoxia prevents oxygeninduced retinopathy. Proc. Natl. Acad. Sci. USA 105, 19898–19903.

    Article  PubMed  Google Scholar 

  • Seddon J. M., Gensler G., Milton R. C., Klein M. L. and Rifai N. 2004 Association between Creactive protein and agerelated macular degeneration. JAMA 291, 704–710.

    Article  PubMed  CAS  Google Scholar 

  • Sepp N. T., Li L. J., Lee K. H., Brown E. J., Caughman S. W., Lawley T. J. et al. 1994 Basic fibroblast growth factor increasesexpression of the alpha v beta 3 integrin complex on human microvascular endothelial cells. J. Invest. Dermatol. 103, 295–299.

    Article  PubMed  CAS  Google Scholar 

  • She H., Nakazawa T., Matsubara A., Hisatomi T., Young T. A., Michaud N. et al. 2007 Reduced photoreceptor damage after photodynamic therapy through blockade of nitric oxide synthase in a model of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 48, 2268–2277.

    Article  PubMed  Google Scholar 

  • Shi X. H., He S. Z. and Zhao S. H. 2004 Expression and signification of pigment epitheliumderived factor in experimental choroidal neovascularization of rat. Zhonghua Yan Ke Za Zhi 40, 404–408.

    PubMed  Google Scholar 

  • Shibuya M. and ClaessonWelsh L. 2006 Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res. 312, 549–560.

    Article  PubMed  CAS  Google Scholar 

  • Shih S. C., Ju M., Liu N. and Smith L. E. 2003 Selective stimulation of VEGFR1 prevents oxygeninduced retinal vascular degeneration in retinopathy of prematurity. J. Clin. Invest. 112, 50–57.

    PubMed  CAS  Google Scholar 

  • Shing Y., Folkman J., Sullivan R., Butterfield C., Murray J. and Klagsbrun M. 1984 Heparin affinity: purification of a tumorderived capillary endothelial cell growth factor. Science 223, 1296–1299.

    Article  PubMed  CAS  Google Scholar 

  • Shing Y., Folkman J., Haudenschild C., Lund D., Crum R. and Klagsbrun M. 1985 Angiogenesis is stimulated by a tumorderived endothelial cell growth factor. J. Cell Biochem. 29, 275–287.

    Article  PubMed  CAS  Google Scholar 

  • Shono T., Kanetake H. and Kanda S. 2001 The role of mitogenactivated protein kinase activation within focal adhesions in chemotaxis toward FGF2 by murine brain capillary endothelial cells. Exp. Cell Res. 264, 275–283.

    Article  PubMed  CAS  Google Scholar 

  • Shweiki D., Itin A., Soffer D. and Keshet E. 1992 Vascular endothelial growth factor induced by hypoxia may mediate hypoxiainitiated angiogenesis. Nature 359, 843–845.

    Article  PubMed  CAS  Google Scholar 

  • Silva K. C., Pinto C. C., Biswas S. K., de Faria J. B. and de Faria J. M. 2007 Hypertension increases retinal inflammation in experimental diabetes: a possible mechanism for aggravation of diabetic retinopathy by hypertension. Curr. Eye Res. 32, 533–541.

    Article  PubMed  CAS  Google Scholar 

  • Simo R., Carrasco E., Garcia-Ramirez M. and Hernandez C. 2006 Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr. Diabetes Rev. 2, 71–98.

    Article  PubMed  CAS  Google Scholar 

  • Singh N., Amin S., Richter E., Rashid S., Scoglietti V., Jani P. D. et al. 2005a Flt-1 intraceptors inhibit hypoxia-induced VEGF expression in vitro and corneal neovascularization in vivo. Invest. Ophthalmol. Vis. Sci. 46, 1647–1652.

    Article  PubMed  Google Scholar 

  • Singh N., Macnamara E., Rashid S., Ambati J., Kontos C. D., Higgins E. et al. 2005b Systemic soluble Tie2 expression inhibits and regresses corneal neovascularization. Biochem. Biophys. Res. Commun. 332, 194–199.

    Article  PubMed  CAS  Google Scholar 

  • Singh N., Jani P. D., Suthar T., Amin S. and Ambati B. K. 2006 Flt-1 intraceptor induces the unfolded protein response, apoptotic factors, and regression of murine injury induced corneal neovascularization. Invest. Ophthalmol. Vis. Sci. 47, 4787–4793.

    Article  PubMed  Google Scholar 

  • Singh N., Higgins E., Amin S., Jani P., Richter E., Patel A. et al. 2007 Unique homologous siRNA blocks hypoxia-induced VEGF upregulation in human corneal cells and inhibits and regresses murine corneal neovascularization. Cornea 26, 65–72.

    Article  PubMed  Google Scholar 

  • Skopinski P., Rogala E., Duda-Krol B., Lipinska A., Sommer E., Chorostowska-Wynimko J. et al. 2005 Increased interleukin-18 content and angiogenic activity of sera from diabetic (Type 2) patients with background retinopathy. J. Diabet. Complications 19, 335–338.

    Article  Google Scholar 

  • Smith L. E. 2005 IGF-1 and retinopathy of prematurity in the preterm infant. Biol. Neonate 88, 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Smith L. E. 2008 Through the eyes of a child: understanding retinopathy through ROP the Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 49, 5177–5182

    Article  PubMed  Google Scholar 

  • Smith L. E., Kopchick J. J., Chen W., Knapp J., Kinose F., Daley D. et al. 1997 Essential role of growth hormone in ischemia-induced retinal neovascularization. Science 276, 1706–1709.

    Article  PubMed  CAS  Google Scholar 

  • Smith L. E., Shen W., Perruzzi C., Soker S., Kinose F., Xu X. et al. 1999 Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat. Med. 5, 1390–1395.

    Article  PubMed  CAS  Google Scholar 

  • Soubrane G., Jerdan J., Karpouzas I., Fayein N. A., Glaser B., Coscas G. et al. 1990 Binding of basic fibroblast growth factor to normal and neovascularized rabbit cornea. Invest. Ophthalmol. Vis. Sci. 31, 323–333.

    PubMed  CAS  Google Scholar 

  • Soubrane G., Cohen S. Y., Delayre T., Tassin J., Hartmann M. P., Coscas G. J. et al. 1994 Basic fibroblast growth factor experimentally induced choroidal angiogenesis in the minipig. Curr. Eye Res. 13, 183–195.

    Article  PubMed  CAS  Google Scholar 

  • Spencer K. L., Hauser M. A., Olson L. M., Schmidt S., Scott W. K., Gallins P. et al. 2007 Protective effect of complement factor B and complement component 2 variants in agerelated macular degeneration. Hum. Mol. Genet. 16, 1986–1992.

    Article  PubMed  CAS  Google Scholar 

  • Stokes C. L., Rupnick M. A., Williams S. K. and Lauffenburger D. A. 1990 Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab. Invest. 63, 657–668.

    PubMed  CAS  Google Scholar 

  • Suchting S., Heal P., Tahtis K., Stewart L. M. and Bicknell R. 2005 Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J. 19, 121–123.

    PubMed  CAS  Google Scholar 

  • Suganthalakshmi B., Anand R., Kim R., Mahalakshmi R., Karthikprakash S., Namperumalsamy P. et al. 2006 Association of VEGF and eNOS gene polymorphisms in type 2 diabetic retinopathy. Mol. Vis. 12, 336–341.

    PubMed  CAS  Google Scholar 

  • Sugihara T., Wadhwa R., Kaul S. C. and Mitsui Y. 1998 A novel alternatively spliced form of murine vascular endothelial growth factor, VEGF 115. J. Biol. Chem. 273, 3033–3038.

    Article  PubMed  CAS  Google Scholar 

  • Suk K. K., Dunbar J. A., Liu A., Daher N. S., Leng C. K., Leng J. K. et al. 2008 Human recombinant erythropoietin and the incidence of retinopathy of prematurity: a multiple regression model. J. AAPOS 12, 233–238.

    Article  PubMed  Google Scholar 

  • Suri C., Jones P. F., Patan S., Bartunkova S., Maisonpierre P. C., Davis S. et al. 1996 Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180.

    Article  PubMed  CAS  Google Scholar 

  • Suri C., McClain J., Thurston G., McDonald D. M., Zhou H., Oldmixon E. H. et al. 1998 Increased vascularization in mice overexpressing angiopoietin-1. Science 282, 468–471.

    Article  PubMed  CAS  Google Scholar 

  • Suzuma K., Takagi H., Otani A., Oh H. and Honda Y. 1999 Expression of thrombospondin-1 in ischemia-induced retinal neovascularization. Am. J. Pathol. 154, 343–354.

    PubMed  CAS  Google Scholar 

  • Swaroop A., Branham K. E., Chen W. and Abecasis G. 2007 Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting complex disease traits. Hum. Mol. Genet. 16, R174–R182.

    Article  PubMed  CAS  Google Scholar 

  • Takagi H., Watanabe D., Suzuma K., Kurimoto M., Suzuma I., Ohashi H. et al. 2007 Novel role of erythropoietin in proliferative diabetic retinopathy. Diabetes Res. Clin. Pract. 77, S62–S64.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H. and Shibuya M. 2005 The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. 109, 227–241.

    Article  PubMed  CAS  Google Scholar 

  • Tang N. P., Zhou B., Wang B. and Yu R. B. 2009 HTRA1 promoter polymorphism and risk of age-related macular degeneration: a meta-analysis. Ann. Epidemiol. 19, 740–745.

    Article  PubMed  Google Scholar 

  • Tawfik A., Sanders T., Kahook K., Akeel S., Elmarakby A. and Al-Shabrawey M. 2009 Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Invest. Ophthalmol. Vis. Sci. 50, 878–884.

    Article  PubMed  Google Scholar 

  • Teng Y., Cui H., Yang M., Song H., Zhang Q., Su Y. et al. 2009 Protective effect of puerarin on diabetic retinopathy in rats. Mol. Biol. Rep. 36, 1129–1133.

    Article  PubMed  CAS  Google Scholar 

  • Terry T. L. 1942 Fibroblastic overgrowth of persistent Tunica Vasculosa Lentis in infants born prematurely: II. Report of cases clinical aspects. Trans. Am. Ophthalmol. Soc. 40, 262–284.

    PubMed  CAS  Google Scholar 

  • Thakkinstian A., Han P., McEvoy M., Smith W., Hoh J., Magnusson K. et al. 2006 Systematic review and meta-analysis of the association between complement factor H Y402H polymorphisms and age-related macular degeneration. Hum. Mol. Genet. 15, 2784–2790.

    Article  PubMed  CAS  Google Scholar 

  • Tong J. P., Shen Y., Chan W. M., Lin S. C. and Peng Z. P. 2006 Vascular endothelial growth factor and pigment epithelium-derived factor in aqueous humor of patients with choroidal neovascularization. Zhejiang Da Xue Xue Bao Yi Xue Ban 35, 311–314.

    PubMed  CAS  Google Scholar 

  • Triebel J., Huefner M. and Ramadori G. 2009 Investigation of prolactin-related vasoinhibin in sera from patients with diabetic retinopathy. Eur. J. Endocrinol. 161, 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi C., Sonoda K. H., Egashira K., Qiao H., Hisatomi T., Nakao S. et al. 2003 The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization. J. Leukoc. Biol. 74, 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Tuo J., Smith B. C., Bojanowski C.M., Meleth A. D., Gery I., Csaky K. G. et al. 2004 The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration. FASEB J. 18, 1297–1299.

    PubMed  CAS  Google Scholar 

  • Twining S. S., Wilson P. M. and Ngamkitidechakul C. 1999 Extrahepatic synthesis of plasminogen in the human cornea is upregulated by interleukins-1alpha and — 1beta. Biochem. J. 339, 705–712.

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann S., Friedrichs U., Eichler W., Hoffmann S. and Wiedemann P. 2001 Direct measurement of VEGF-induced nitric oxide production by choroidal endothelial cells. Microvasc. Res. 62, 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Underwood P. A., Bean P. A. and Gamble J. R. 2002 Rate of endothelial expansion is controlled by cell:cell adhesion. Int. J. Biochem. Cell. Biol. 34, 55–69.

    Article  PubMed  CAS  Google Scholar 

  • Uthra S., Raman R., Mukesh B. N., Rajkumar S. A., Kumari R. P., Agarwal S. et al. 2007 Diabetic retinopathy and IGF-1 gene polymorphic cytosineadenine repeats in a Southern Indian cohort. Ophthalmic. Res. 39, 294–299.

    Article  PubMed  CAS  Google Scholar 

  • Uthra S., Raman R., Mukesh B. N., Rajkumar S. A., Padmaja K. R., Paul P. G. et al. 2008 Association of VEGF gene polymorphisms with diabetic retinopathy in a south Indian cohort. Ophthalmic Genet. 29, 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebrouck S., Daniels H., Moons, L., Vanhole C., Carmeliet P. and De Zegher F. 2009 Oxygen-induced retinopathy in mice: amplification by neonatal IGF-I deficit and attenuation by IGF-I administration. Pediatr. Res. 65, 307–310.

    Article  PubMed  CAS  Google Scholar 

  • Villegas-Becerril E., Gonzalez-Fernandez R., Perula-Torres L. and Gallardo-Galera J. M. 2006 IGF-I, VEGF and bFGF as predictive factors for the onset of retinopathy of prematurity (ROP). Arch. Soc. Esp. Oftalmol. 81, 641–646.

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi Y., Usui Y., Okunuki Y., Takeuchi M., Kezuka T., Iwasaki T. et al. 2008 Increased levels of monokine induced by interferon-gamma (Mig) in the vitreous of patients with diabetic retinopathy. Diabetic Med. 25, 875–877.

    Article  PubMed  CAS  Google Scholar 

  • Wang F. H., Sun X. D., Zhang X., Xu X., Zhu Q., Huang J. N. et al. 2007 Role of pigment epithelium-derived factor on proliferation and migration of choroidal capillary endothelium induced by vascular endothelial growth factor in vitro. Chin. Med. J. 120, 1534–1538.

    PubMed  CAS  Google Scholar 

  • Wang Z. Y., Shen L. J., Tu L., Hu D. N., Liu G. Y., Zhou Z. L. et al. 2009 Erythropoietin protects retinal pigment epithelial cells from oxidative damage. Free Radic. Biol. Med. 46, 1032–1041.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe D. 2007 Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. Nippon Ganka Gakkai Zasshi 111, 892–898.

    PubMed  Google Scholar 

  • Watanabe D., Suzuma K., Matsui S., Kurimoto M., Kiryu J., Kita M. et al. 2005a Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N.Engl. J. Med. 353, 782–792.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe D., Suzuma K., Suzuma I., Ohashi H., Ojima T., Kurimoto M. et al. 2005b Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am. J. Ophthalmol. 139, 476–481.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe D., Takagi H., Suzuma K., Oh H., Ohashi H. and Honda Y. et al. 2005c Expression of connective tissue growth factor and its potential role in choroidal neovascularization. Retina 25, 911–918.

    Article  PubMed  Google Scholar 

  • Werdich X. Q., McCollum G. W., Rajaratnam V. S. and Penn J. S. 2004 Variable oxygen and retinal VEGF levels: correlation with incidence and severity of pathology in a rat model of oxygeninduced retinopathy. Exp. Eye Res. 79, 623–630.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson-Berka J. L. 2004 Vasoactive factors and diabetic retinopathy: vascular endothelial growth factor, cycoloxygenase-2 and nitric oxide. Curr. Pharm. Des. 10, 3331–3348.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson-Berka J. L. 2006 Angiotensin and diabetic retinopathy. Int. J. Biochem. Cell Biol. 38, 752–765.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson-Berka J. L. and Fletcher E. L. 2004 Angiotensin and bradykinin: targets for the treatment of vascular and neuro-glial pathology in diabetic retinopathy. Curr. Pharm. Des. 10, 3313–3330.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson-Berka J. L., Babic S., De Gooyer T., Stitt A. W., Jaworski K., Ong L. G. et al. 2004 Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am. J. Pathol. 164, 1263–1273.

    PubMed  CAS  Google Scholar 

  • Wilkinson-Berka J. L., Jones D., Taylor G., Jaworski K., Kelly D. J., Ludbrook S. B. et al. 2006 SB-267268, a nonpeptidic antagonist of alpha(v)beta3 and alpha(v)beta5 integrins, reduces angiogenesis and VEGF expression in a mouse model of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 47, 1600–1605.

    Article  PubMed  Google Scholar 

  • Witzenbichler B., Maisonpierre P. C., Jones P., Yancopoulos G. D. and Isner J. M. 1998 Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J. Biol. Chem. 273, 18514–18521.

    Article  PubMed  CAS  Google Scholar 

  • Woessner Jr J. F. 1994 The family of matrix metalloproteinases. Ann. N. Y. Acad. Sci. 732, 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Wu W. C., Kao Y. H., Hu P. S. and Chen J. H. 2007 Geldanamycin, a HSP90 inhibitor, attenuates the hypoxia-induced vascular endothelial growth factor expression in retinal pigment epithelium cells in vitro. Exp. Eye Res. 85, 721–731.

    Article  PubMed  CAS  Google Scholar 

  • Xie B., Shen J., Dong A., Swaim M., Hackett S. F., Wyder L. et al. 2008 An Adam 15 amplification loop promotes vascular endothelial growth factor-induced ocular neovascularization. FASEB J. 22, 2775–2783.

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi S., Nakamura K. and Imaizumi T. 2005 Advanced glycation end products (AGEs) and diabetic vascular complications. Curr. Diabetes Rev. 1, 93–106.

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi S., Matsui T., Nakamura K., Inoue H., Takeuchi M., Ueda S. et al. 2008 Olmesartan blocks advanced glycation end products (AGEs)-induced angiogenesis in vitro by suppressing receptor for AGEs (RAGE) expression. Microvasc. Res. 75, 130–134.

    Article  PubMed  CAS  Google Scholar 

  • Yancopoulos G. D., Davis S., Gale N. W., Rudge J. S., Wiegand S. J. and Holash 2000 et al. 2000 Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248.

    Article  PubMed  CAS  Google Scholar 

  • Yang Z., Stratton C., Francis P. J., Kleinman M. E., Tan P. L, Gibbs D. et al. 2008 Toll-like receptor 3 and geographic atrophy in agerelated macular degeneration. N. Engl. J. Med. 359, 1456–1463.

    Article  PubMed  CAS  Google Scholar 

  • Yates J. R., Sepp T., Matharu B. K., Khan J. C., Thurlby D. A., Shahid H. et al. 2007 Complement C3 variant and the risk of agerelated macular degeneration. N. Engl. J. Med. 357, 553–561.

    Article  PubMed  CAS  Google Scholar 

  • Yaylali V., Ohta T., Kaufman S. C., Maitchouk D. Y. and Beuerman R. W. 1998 In vivo confocal imaging of corneal neovascularization. Cornea 17, 646–653.

    Article  PubMed  CAS  Google Scholar 

  • Ye H. Q. and Azar D. T. 1998 Expression of gelatinases A and B, and TIMPs 1 and 2 during corneal wound healing. Invest. Ophthalmol. Vis. Sci. 39, 913–921.

    PubMed  CAS  Google Scholar 

  • Ye H. Q., Maeda M., Yu F. S. and Azar D. T. 2000 Differential expression of MT1-MMP (MMP-14) and collagenase III (MMP-13) genes in normal and wounded rat corneas. Invest. Ophthalmol. Vis. Sci. 41, 2894–2899.

    PubMed  CAS  Google Scholar 

  • Yokoi M., Yamagishi S., Saito A., Yoshida Y., Matsui T., Saito W. et al. 2007 Positive association of pigment epithelium-derived factor with total antioxidant capacity in the vitreous fluid of patients with proliferative diabetic retinopathy. Br. J. Ophthalmol. 91, 885–887.

    Article  PubMed  Google Scholar 

  • Zhou J., Pham L., Zhang N., He S., Gamulescu M. A., Spee C. et al. 2005 Neutrophils promote experimental choroidal neovascularization. Mol. Vis. 11, 414–424.

    PubMed  CAS  Google Scholar 

  • Zubilewicz A., Hecquet C., Jeanny J. C., Soubrane G., Courtois Y. and Mascarelli 2001 Two distinct signalling pathways are involved in FGF2-stimulated proliferation of choriocapillary endothelial cells: a comparative study with VEGF. Oncogene 20, 1403–1413.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balamurali K. Ambati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qazi, Y., Maddula, S. & Ambati, B.K. Mediators of ocular angiogenesis. J Genet 88, 495–515 (2009). https://doi.org/10.1007/s12041-009-0068-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-009-0068-0

Keywords

Navigation