Elsevier

Vision Research

Volume 11, Issue 10, October 1971, Pages 1057-1064
Vision Research

Comparison of macular pigment densities in human eyes

https://doi.org/10.1016/0042-6989(71)90112-XGet rights and content

Abstract

The optical density curve of the macular pigment has been estimated for 49 European and West Indian subjects by comparing their foveal and extra-foveal spectral sensitivities measured by the flicker technique. No significant differences in density have been observed related to race, normal environment, age, colour of skin or colour of eyes but red-naked subjects had on average a significantly higher density of macular pigment. The extinction coefficient of the pigment was the same for all subjects and differences in density were consistent with variations in pigment concentration and/or thickness of absorbing layer.

Résumé

On mesure sur 49 sujets européens et Ouest-Indiens la courbe de densitéoptique du pigment maculaire par comparaison (technique de papillotement) des sensibilités spectrales fovéales et extra-fovéales. On n'observe pas de différences significatives de densitéen liaison avec la race, l'environnement normal, l'aˆge, la couleur de la peau ni la couleur des yeux, mais les sujets roux présentent en moyenne une densitéde pigment maculaire plusélevée, d'une façon significative. Le coefficient d'extinction du pigment est le meˆme pour tous les sujets et les différences de densitéproviennent de variations dans la concentration du pigment, ou dans l'épaisseur de la couche absorbante, ou les deux.

Zusammenfassung

Durch Vergleich der mit dem Flimmerphotometer gemessenen fovealen und auβerfovealen spektralen Empfindlichkeit wurde die Dichte des Maculapigmentes für 49 europäische und westindische Vp geschätzt. Es ergaben sich keine signifikanten Unterschiede bezüglich Rasse, normaler Umgebung, Alter, Hautfarbe oder Augenfarbe, lediglich rothaarige Vp hatten eine im Durchschnitt signifikant höhere Dichte des Maculapigments. Der Extinktionskoeffizent des Pigmentes war für alle Vp gleich. Unterschiede in der Dichte waren inÜbereinstimmung mitÄnderungen in der Pigmentkonzentration und/oder der Dicke der absorbierenden Schicht.

Peзюme

Кpивaя oптихecкoй плoтнocти мaкyляpнoгo пнгмeнтa былa oпpeдeлeнa для 49 иcпытyeмых Eвpoпeйцeв и ypoжeнцeв Becтнндии, пyтeм cpaвнeния их фoвeaльнoй и зкcтpaфoвeaльнoй cпeктpaльнoй хyвcтвитeльнocти, измepeннoй мeтoдoм мeлькaющeй фoтoмeтpии. He нaблюдaлocь знaхитeльных paзлихий в плoтнocти, пpи cooтнeceнии ee к pace, oбыхнoмy oкpyжeнию, вoзpacтy, цвeтy кoжи или цвeтy глaз, нo pыжиe cyбьщeкты имeли в cpeднeм знaхитeльнo бoлee выcoкyю плoтнocть мaкyляpнoгo пигмeнтa. Кoзффициeнт зкcтинкции был oдинaкoвьм для вceх иcпытyeмых и paзлихия в oптиyecкoй плoтнocти cooтвeтcтвoвaли вapиaциям в кoнцeнтpaции питмeнтa и/или тoлщинe aбcopбиyющeгo cлoя.

References (12)

There are more references available in the full text version of this article.

Cited by (96)

  • Bongard and Smirnov on the tetrachromacy of extra-foveal vision

    2022, Vision Research
    Citation Excerpt :

    Fridrikh, 1957b) See also: Bongard, Smirnov, and Friedrich (1958). An explanation for these discrepancies may lie in individual differences in the optical density of the macular pigment, which are known to be large (Bone & Sparrock, 1971; Hammond, Wooten, & Snodderly, 1997). Bongard and Smirnov believed that the fourth signal in the periphery came from the rods and that these ‘twilight receivers’ are active at high levels of photopic luminance.

  • Analysis of macular carotenoids in the developing macaque retina: The timeline of macular pigment development

    2022, Methods in Enzymology
    Citation Excerpt :

    Macular pigment is also associated with several visual functions of the healthy normal retina, including attenuation of chromatic aberration, improved acuity under conditions of blue haze, and glare recovery (Bernstein et al., 2016; Bovier, Renzi, & Hammond, 2014; Engles, Wooten, & Hammond, 2007; Hammond & Fletcher, 2012; Hammond, Fletcher, & Elliott, 2013; Stringham, Bovier, Wong, & Hammond, 2010; Stringham & Hammond, 2008; Stringham & Hammond, 2007). It has long been known that macula pigment in adults remains relatively stable throughout life (Berendschot & van Norren, 2004; Bone, Landrum, Fernandez, & Tarsis, 1988; Bone & Sparrock, 1971; Gellermann et al., 2002). However, adult macular pigment levels can increase robustly in most subjects, (but not all), when increased levels of lutein and/or zeaxanthin are supplemented in the diet.

  • Entrainment to the CIECAM02 and CIELAB colour appearance models in the human cortex

    2018, Vision Research
    Citation Excerpt :

    As information travels through the human visual system, it is subjected to a variety of transformations. First, the cornea and the lens alter the spectral content of incoming light (Bone & Sparrock, 1971). This filtered light then strikes the retina, where photoreceptor cones with different spectral absorption rates activate at different wavelengths (Stockman & Sharpe, 2000; Stockman, Sharpe, & Fach, 1999).

  • Individual differences in visual science: What can be learned and what is good experimental practice?

    2017, Vision Research
    Citation Excerpt :

    The density of the lens pigment varies markedly across observers and also increases steadily with age (Pokorny, Smith, & Lutze, 1987; Weale, 1988; Werner, 1982). Similarly, observers vary widely in the density of the macular pigment screening the central fovea (Bone & Sparrock, 1971; Werner, Donnelly, & Kliegl, 1987. These pre-receptoral filters strongly bias the spectrum of the light reaching the photoreceptors and are in fact the primary source of inter-observer variations in colour matching (Webster & MacLeod, 1988).

View all citing articles on Scopus
View full text