Skip to main content
Log in

Mechanisms of fluid accumulation in retinal edema

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

This paper reviews the anatomic and physiologic conditions which predispose to fluid accumulation within the retina. Retinal edema has its inception in disease that causes a breakdown of the blood-retinal barrier in retinal capillaries and/or the retinal pigment epithelium (RPE). Edema develops not only because protein and fluid enter the extracellular space, but because the external limiting membrane and the convoluted extracellular pathway within the retina limit the clearance of albumin and other large osmotically-active molecules. These molecules bind water to cause edema. Recognition of edema clinically is complicated by the facts that angiographic markers (fluorescein and ICG) do not match albumin in size, and that clinical leakage does not always correlate closely with tissue swelling or functional loss. Active water transport across the RPE is efficient at removing subretinal water, but the flow resistance of the retina limits RPE access to the water of retinal edema. Consideration of the pathophysiology of retinal edema may aid in the development of better strategies for managing retinal edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fatt I, Shantinath K. Flow conductivity of retina and its role in retinal adhesion. Expl Eye Res 1971; 12: 218-26.

    Article  CAS  Google Scholar 

  2. Marmor MF. Control of subretinal fluid and mechanisms of serous detachment. In: Marmor MF, Wolfensberger TJ, eds. The retinal pigment epithelium: Current aspects of function and disease. New York: Oxford University Press, 1998: p 420-38.

    Google Scholar 

  3. Hogan MJ, Alvarado JA, Weddell JE. Histology of the human eye. Philadelphia, WB Saunders Co, 1971: 442-4, 488-90.

    Google Scholar 

  4. Bunt-Milam AH, Saari JC, Klock IB, Gorwin GG. Zonulae adherentes pore size in the external limiting membrane of the rabbit retina. Invest Ophthalmol Vis Sci 1985; 26: 1377-80.

    PubMed  CAS  Google Scholar 

  5. Küng N, Odermatt B, Niemeyer G. Experimental opening of the blood-retinal barrier in the perfused cat eye in vitro. Invest Ophthalmol Vis Sci 1998; 39: S371.

    Google Scholar 

  6. Takeuchi A, Kricorian G, Yao X-Y, Kenny JW, Marmor MF. The rate and source of albumin entry into saline-filled experimental retinal detachments. Invest Ophthalmol Vis Sci 1994; 35: 3792-8.

    PubMed  CAS  Google Scholar 

  7. Takeuchi A, Kricorian G, Marmor MF. Albumin movement out of the subretinal space after experimental retinal detachment. Invest Ophthalmol Vis Sci 1995; 36: 1298-1305.

    PubMed  CAS  Google Scholar 

  8. Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal space. Expl Eye Res 1985; 40: 687-96.

    Article  CAS  Google Scholar 

  9. Negi A, Marmor MF. Experimental serous retinal detachment and focal pigment epithelial damage. Arch Ophthalmol 1984; 102: 445-9.

    PubMed  CAS  Google Scholar 

  10. Negi A, MarmorMF. The resorption of subretinal fluid after diffuse damage to the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1983; 24: 1475-9.

    PubMed  CAS  Google Scholar 

  11. Hughes BA, Gallemore RP, Miller SS. Transport mechanisms in the RPE. In: Marmor MF, Wolfensberger TJ, eds. The retinal pigment epithelium: Current aspects of function and disease. New York: Oxford University Press, 1998: 103-34.

    Google Scholar 

  12. Marmor MF. New hypothesis on the pathogenesis and treatment of serous retinal detachment. Graefe's Arch Clin Expl Ophthalmol 1988; 226: 548-52.

    Article  CAS  Google Scholar 

  13. Marmor MF. On the cause of serous detachments and acute central serous chorioretinopathy. Br J Ophthalmol 1997; 81: 812-3.

    Article  PubMed  CAS  Google Scholar 

  14. Vinores SA, Amin A, Derevianik NL, GreenWR, Campochiaro PA. Immunohistochemical localization of blood-retinal barrier breakdown sites associated with post-surgical macular oedema. Histochemical J, 1994; 26: 655-65.

    Article  CAS  Google Scholar 

  15. Puliafito CA, Hee MR, Schuman JS, Fujimoto JG. Optical coherence tomography of ocular diseases. Thorofare, NJ, 1996; 163-184.

  16. Yoneya S, Saito T, Komatsu Y, Koyama I, Takabashi K, Duvoll-Young J. Binding properties of indocyanine green in human blood. Invest Ophthalmol Vis Sci 1998; 39: 1286-90.

    PubMed  CAS  Google Scholar 

  17. Asrani S, Zeimer R, Goldberg MF, Zou S. Application of rapid scanning retinal thickness analysis in retinal diseases. Ophthalmol 1997; 104: 1145-51.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmor, M.F. Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 97, 239–249 (1999). https://doi.org/10.1023/A:1002192829817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002192829817

Navigation