Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion

Abstract

THE number of neurotrophic factors found in the central nervous system is rapidly growing, but their functions in vivo are largely unknown. In the peripheral nervous system they promote the survival of developing and lesioned neurons and enhance nerve fibre growth and regeneration1–6. Here we study the effects of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) on the largest tract system leading from the brain to the spinal cord, the corticospinal tract (CST)7. The developing CST grows down the spinal cord during the first postnatal days and innervates its targets after a waiting period by collateral sprouting8–10. We find that NT-3 injected locally specifically enhances this sprouting, whereas BDNF has no effect. In adult rats, injection of NT-3 (but not BDNF) into the lesioned spinal cord increases the regenerative sprouting of the transected CST. The distance of growth of the sprouts is very restricted, but application of an antibody that neutralizes myelin-associated neurite growth inhibitory proteins11 results in long-distance regeneration of CST fibres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barde, Y.-A. Neuron 2, 1525–1534 (1989).

    Article  CAS  Google Scholar 

  2. Davies, A. M. & Lumdsen, M. E. A. Rev. Neurosci. 13, 61–73 (1990).

    Article  CAS  Google Scholar 

  3. Diamond, J., Holmes, M. & Coughlin, M. J. Neurosci. 12, 1454–1466 (1992).

    Article  CAS  Google Scholar 

  4. Oppenheim, R. W., Prevette, D., Quin-Wei, Y., Collins, F. & MacDonald, J. Science 251, 1616–1618 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Oppenheim, R. W., Quin-Wei, Y., Prevette, D. & Yan, Q. Nature 360, 755–757 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Sendtner, M., Kreutzberg, G. F. & Thoenen, H. Nature 345, 440–441 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Nudo, R. J. & Masterton, R. B. J. comp. Neurol. 277, 53–79 (1988).

    Article  CAS  Google Scholar 

  8. Schreyer, D. J. & Jones, E. G. Neuroscience 7, 1837–1853 (1992).

    Article  Google Scholar 

  9. O'Leaty, D. D. M. & Terashima, T. Neuron 1, 901–910 (1988).

    Article  Google Scholar 

  10. Schwab, M. E. & Schnell, L. J. Neurosci. 11, 709–722 (1991).

    Article  CAS  Google Scholar 

  11. Caroni, P. & Schwab, M. E. Neuron 1, 85–96 (1988).

    Article  CAS  Google Scholar 

  12. Bregman, B. S., Kunkel-Bagden, E., McAtee, M. & O'Neill, A. J. comp. Neurol. 282, 355–370 (1989).

    Article  CAS  Google Scholar 

  13. Schnell, L. & Schwab, M. E. Nature 343, 269–272 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Schnell, L. & Schwab, M. E. Eur. J. Neurosci. 5, 1156–1171 (1993).

    Article  CAS  Google Scholar 

  15. Kunkel-Bagden, E. et al. Neurosci. Abstr. 19, 681 (1993).

    Google Scholar 

  16. Maisonpierre, P. C. et al. Neuron 5, 501–509 (1990).

    Article  CAS  Google Scholar 

  17. Ernfors, P. & Persson, H. Eur. J. Neurosci. 3, 953–961 (1991).

    Article  Google Scholar 

  18. Friedman, W. J., Olson, L. & Persson, H. Eur. J. Neurosci. 3, 688–697 (1991).

    Article  Google Scholar 

  19. Casale, E. J., Light, A. R. & Rustioni, A. J. comp. Neurol. 278, 275–286 (1988).

    Article  CAS  Google Scholar 

  20. Romanes, G. J. Progr. Brain. Res. 11, 93–116 (1964).

    Article  CAS  Google Scholar 

  21. Heffner, C. D., Lumsden, A. G. S. & O'Leary, D. D. M. Science 247, 217–220 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Ringstedt, T., Lagercrantz, H. & Persson, H. Devl Brain Res. 72, 119–131 (1993).

    Article  CAS  Google Scholar 

  23. Merlio, J.-P., Emfors, P., Jaber, M. & Persson, H. Neuroscience 51, 513–532 (1992).

    Article  CAS  Google Scholar 

  24. Altar, C. A., Criden, M. R., Lindsay, R. M. & DiStefano, P. S. J. Neurosci. 13, 733–743 (1993).

    Article  CAS  Google Scholar 

  25. Ramon y Cajal, S. Degeneration and Regeneration of the Nervous System (Hafner, New York, 1959).

    Google Scholar 

  26. Schwab, M. E., Kapfhammer, J. P. & Bandtlow, C. E. A. Rev. Neurosci. 16, 565–595 (1993).

    Article  CAS  Google Scholar 

  27. Götz, R., Kolbeck, R., Lottspeich, F. & Barde, Y.-A. Eur. J. Biochem. 204, 745–749 (1992).

    Article  Google Scholar 

  28. Dechant, G. et al. Development 119, 545–558 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnell, L., Schneider, R., Kolbeck, R. et al. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367, 170–173 (1994). https://doi.org/10.1038/367170a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367170a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing