Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Target recognition and visual maps in the thalamus of achiasmatic dogs

Abstract

VISION is dependent on ordered neuronal representations or maps of visual space. These maps depend on precise connections between retinal axons and their targets cells. In mammals, nerve fibres from right and left eyes produce congruent maps of contralateral visual space in adjacent layers of the lateral geniculate nucleus (LGN)1. We have identified an autosomal recessive mutation in Belgian sheepdogs2,3 that eliminates the optic chiasm. In these mutants, all retinal axons project into the ipsilateral optic tract, including those originating in the nasal hemiretina that normally cross midline. These animals exhibit a pronounced horizontal nystagmus4,5. The abnormal ipsilaterally directed nasal fibres innervate the LGN as if they had successfully crossed the midline, terminating in the appropriate layer of the nucleus. As a consequence, the LGN contains non-congruent, mirror-image maps of visual space in adjacent layers. These results show that there is a robust affinity between nasal and temporal retinal axons and specific LGN layers even when all retinal axons originate from a single eye.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kaas, J. H., Guillery, R. W. & Allman, J. M. Brain Behav. Evol. 6, 253–299 (1972).

    Article  CAS  Google Scholar 

  2. Williams, R. W., Garraghty, P. E. & Goldowitz, D. Soc. Neurosci. Abstr. 17, 187 (1991).

    Google Scholar 

  3. Hogan, D., Garraghty, P. E. & Williams, R. W. Soc. Neurosci. Abstr. 19, 524 (1993).

    Google Scholar 

  4. Dell'Osso, L. F. Curr. Neuro. Ophthalmol. 1, 139–172 (1988).

    Google Scholar 

  5. Williams, R. W. & Dell'Osso, L. F. Invest. Ophthalmol. Vis. Sci. 34, 1125 (1993).

    Google Scholar 

  6. Rioch, D. M. J. comp. Neurol. 49, 1–119 (1929).

    Article  Google Scholar 

  7. Sanderson, K. J. J. comp. Neurol. 143, 101–118 (1971).

    Article  CAS  Google Scholar 

  8. Apkarian, P., Bour, L. & Barth, P. G. Eur. J. Neurosci. (in the press).

  9. Guillery, R. W. Trends Neurosci. 9, 364–367 (1986).

    Article  Google Scholar 

  10. Stone, J., Campion, J. E. & Leicester, J. J. comp. Neurol. 180, 783–798 (1978).

    Article  CAS  Google Scholar 

  11. Cooper, M. L. & Pettigrew, J. D. J. comp. Neurol. 187, 313–348 (1979).

    Article  CAS  Google Scholar 

  12. Leventhal, A. G. & Creel, D. J. J. Neurosci. 5, 795–807 (1985).

    Article  CAS  Google Scholar 

  13. Balkema, G. W. & Dräger, U. C. Vis. Neurosci. 4, 595–604 (1990).

    Article  CAS  Google Scholar 

  14. Hubel, D. H. & Wiesel, T. N. J. Physiol. 218, 33–62 (1971).

    Article  CAS  Google Scholar 

  15. Guillery, R. W. & Kaas, J. H. J. comp. Neurol. 143, 73–100 (1971).

    Article  CAS  Google Scholar 

  16. Huang, K. & Guillery, R. W. Devl Brain Res. 20, 213–220 (1985).

    Article  Google Scholar 

  17. Guillery, R. W., Lamantia, S. A., Robson, J. A. & Huang, K. J. Neurosci. 5, 1370–1379 (1985).

    Article  CAS  Google Scholar 

  18. Rakic, P. Science 214, 928–931 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Chalupa, L. M. & Williams, R. W. Hum. Neurobiol. 3, 103–107 (1984).

    CAS  PubMed  Google Scholar 

  20. Garraghty, P. E., Shatz, C. J. & Sur, M. Vis. Neurosci. 1, 93–102 (1988).

    Article  CAS  Google Scholar 

  21. Berman, N. & Cynader, M. J. Physiol. 224, 363–389 (1972).

    Article  CAS  Google Scholar 

  22. Walsh, C., Polley, E. H., Hickey, T. L. & Guillery, R. W. Nature 302, 611–614 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Sperry, R. W. Proc. natn. Acad. Sci. U.S.A. 50, 703–710 (1963).

    Article  ADS  CAS  Google Scholar 

  24. Bonhoeffer, F. & Huf, F. Nature 315, 409–410 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, R., Hogan, D. & Garraghty, P. Target recognition and visual maps in the thalamus of achiasmatic dogs. Nature 367, 637–639 (1994). https://doi.org/10.1038/367637a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367637a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing