Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF

Abstract

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS or SACS) is an early onset neurodegenerative disease with high prevalence (carrier frequency 1/22) in the Charlevoix-Saguenay-Lac-Saint-Jean (CSLSJ) region of Quebec. We previously mapped the gene responsible for ARSACS to chromosome 13q11 and identified two ancestral haplotypes. Here we report the cloning of this gene, SACS, which encodes the protein sacsin. The ORF of SACS is 11,487 bp and is encoded by a single gigantic exon spanning 12,794 bp. This exon is the largest to be identified in any vertebrate organism. The ORF is conserved in human and mouse. The putative protein contains three large segments with sequence similarity to each other and to the predicted protein of an Arabidopsis thaliana ORF. The presence of heat-shock domains suggests a function for sacsin in chaperone-mediated protein folding. SACS is expressed in a variety of tissues, including the central nervous system. We identified two SACSmutations in ARSACS families that lead to protein truncation, consistent with haplotype analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The extent of linkage disequilibrium for the ARSACS region compared with the diastrophic dysplasia (DTD) region.
Figure 2: Structure and organization of SACS.
Figure 3: Sequence analysis and identification of SACS mutations in ARSACS patients.
Figure 4: Northern-blot analysis of SACSmRNA.
Figure 5: Darkfield autoradiograph of tissues hybridized to probes complementary to human SACS and mouse Sacs mRNAs (a,c,e, g) and to sense probes (b,d,f,h).
Figure 6: Deduced amino acid sequence and structure of sacsin.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bouchard, J.-P. Recessive spastic ataxia of Charlevoix-Saguenay. in Handbook of Clinical Neurology 16: Hereditary Neuropathies and Spinocerebellar Degenerations (ed. de Jong, J.M.B.V.) 451–459 (Elsevier, Amsterdam, 1991).

  2. Bouchard, J.P. et al>. Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuromuscul. Disord. 8, 474– 479 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Richter, A. et al. Location score and haplotype analyses of the locus for autosomal recessive spastic ataxia of Charlevoix-Saguenay in chromosome region 13q11. Am. J. Hum. Genet. 64, 768– 775 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Charbonneau, H. & Robert, N. The French origins of the Canadian population 1608–1759. in Historical Atlas of Canada Volume I: From the Beginning to 1800 (ed. Harris, R.C.) plate 45 (University of Toronto Press, Toronto, 1987).

  5. Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139– 144 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Hästbacka, J. et al. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nature Genet. 2, 204–211 (1992).

    Article  PubMed  Google Scholar 

  7. Thompson, E.A. & Neel, J.V. Allelic disequilibrium and allele frequency distribution as a function of social and demographic history. Am. J. Hum. Genet. 60, 197–204 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Graham, J. & Thompson, E.A. Disequilibrium likelihoods for fine-scale mapping of a rare allele. Am. J. Hum. Genet. 63, 1517–1530 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Engert, J.C. et al. High resolution physical and transcript map of the autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) candidate region in chromosome 13q11. Genomics 62, 156– 164 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Fink, A.L. Chaperone-mediated protein folding. Physiol. Rev. 79 , 425–449 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Buchner, J. Hsp90 & Co.—a holding for folding. Trends Biochem. Sci. 24, 136–141 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Gupta, R.S. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol. Biol. Evol. 12, 1063– 1073 (1995).

    CAS  PubMed  Google Scholar 

  13. Nakai, K. & Kanehisa, M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897–911 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. McCarthy, L.C. et al. A first-generation whole-genome radiation hybrid map spanning the mouse genome. Genome Res. 7, 1153– 1161 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Etten, W.J. et al. Radiation hybrid map of the mouse genome. Nature Genet. 22, 384–387 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  16. Brown, C.J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 71, 527–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Porchet, N., Aubert, J.P. & Laine, A. MUC5B, the 10.7-kb large central exon encodes various alternate subdomains resulting in a super-repeat. J. Biol. Chem. 272, 3168–3178 ( 1997).

    Article  PubMed  Google Scholar 

  18. Marcotte, E.M. et al. Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751– 753 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Prodromou, C. et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65–75 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Kimura, Y., Yahara, I. & Lindquist, S. Role of the protein chaperone YDJ1 in establishing Hsp90-mediated signal transduction pathways. Science 268, 1362–1365 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Dittmar, K.D., Banach, M., Galigniana, M.D. & Pratt, W.B. The role of DnaJ-like proteins in glucocorticoid receptor·hsp90 heterocomplex assembly by the reconstituted hsp90·p60·hsp70 foldosome complex. J. Biol. Chem. 273, 7358– 7366 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Cummings, C.J. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature Genet. 19, 148–154 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  23. Dickie, M.M. Tumbler, tb. Mouse News Lett. 32 , 45 (1965).

  24. De Braekeleer, M. Geographic distribution of 18 autosomal recessive disorders in the French Canadian population of Saguenay-Lac-St-Jean, Quebec. Ann. Hum. Biol. 22, 111–122 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  25. Knoppers, B.M. & Laberge, C. DNA sampling and informed consent. CMAJ 144, 128– 129 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Birren, B.W., Mancino, V. & Shizuya, H. Bacterial artificial chromosomes. in Genome Analysis: A Laboratory Manual (eds Birren, B. et al .) 241– 295 (Cold Spring Harbor Laboratory Press, Plainview, 1999).

  27. Bonfield, J.K., Smith, K.F. & Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 23, 4992–4999 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonfield, J.K. & Staden, R. Experiment files and their application during large-scale sequencing projects. DNA Seq. 6, 109–117 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  29. Boysen, C., Simon, M.I. & Hood, L. Fluorescence-based sequencing directly from bacterial and P1-derived artificial chromosomes. Biotechniques 23, 978–982 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Smith, R.F., Wiese, B.A., Wojzynski, M.K., Davison, D.B. & Worley, K.C. BCM search launcher—an integrated interface to molecular biology data base search and analysis services available on the World Wide Web. Genome Res. 6, 454 –462 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Schalling, M. et al. Neuropeptide Y and catecholamine synthesizing enzymes and their mRNAs in rat sympathetic neurons and adrenal glands: studies on expression, synthesis and axonal transport after pharmacological and experimental manipulations using hybridization techiques and radioimmunoassay. Neuroscience 41, 753–766 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  32. Weeks, D.E., Sobel, E., O'Connell, J.R. & Lange, K. Computer programs for multilocus haplotyping of general pedigrees. Am. J. Hum. Genet. 56, 1506–1507 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Austerlitz, F. & Heyer, E. Impact of demographic distribution and population growth rate on haplotypic diversity linked to a disease gene and their consequences for the estimation of recombination rate: example of a French Canadian population. Genet. Epidemiol. 16, 2–14 (1999 ).

    Article  CAS  PubMed  Google Scholar 

  34. Devlin, B. & Risch, N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29, 311–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. de la Chapelle, A. & Wright, F.A.D. Linkage disequilibrium mapping in isolated populations: the example of Finland revisited. Proc. Natl Acad. Sci. USA 95, 12416– 12423 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boehnke, M. Limits of resolution of genetic linkage studies: implications for the positional cloning of human disease genes. Am. J. Hum. Genet. 55, 379–390 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Graham, J. Disequilibrium fine-mapping a rare allele via coalesent models of gene ancestry. Thesis, Univ. Washington (1998).

  38. Austerlitz, F. & Heyer, E. Social transmission of reproductive behavior increases frequency of inherited disorders in a young-expanding population. Proc. Natl Acad. Sci. USA 95, 15140–15144 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heyer, E. One founder/one gene hypothesis in a new expanding population: Saguenay (Quebec, Canada). Hum. Biol. 71, 99– 109 (1999).

    CAS  PubMed  Google Scholar 

  40. McNally, E.M. et al. Mild and severe muscular dystrophy caused by a single γ-sarcoglycan mutation. Am. J. Hum. Genet. 59, 1040– 1047 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 5, 277 –286 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients and families for participation; J. Graham, E.A. Thompson, B.F.F. Ouellette, J.D. Rioux, T.M. Fujiwara, P. Lee, M. Shapiro and C.M. Neville for helpful discussions; E.A. Thompson for a computer program for the coalescent method; E. Heyer and H. Vézina for demographic information; J. Ma for assistance in the creation of M13 subclone libraries; F. Gosselin and C. Prevost for sample collection and pedigree information; C. Goguen for administrative assistance; and C. Bieri for computer expertise. This work was supported by grants from the Medical Research Council of Canada (MRC; to A.R., S.B.M., K.M. and T.J.H.), the Muscular Dystrophy Association of Canada (to A.R., S.B.M. and T.J.H.), the March of Dimes (to A.R. and S.B.M.), the National Ataxia Foundation (to A.R. and S.B.M.), l'Institut Interuniversitaire de Recherches sur les Populations (to J.M., T.J.H. and K.M.), the Canadian Genetic Diseases Network (Networks of Centres of Excellence Program (NCE); to T.J.H. and K.M.), the Mathematics of Information Technology and Complex Systems (NCE; to K.M.), the Swedish Medical Research Council (to M.S.) and a research contract from Bristol-Myers Squibb, Millennium Pharmaceuticals Inc. and Affymetrix (to E.S.L. and T.J.H.). T.J.H. is a recipient of a Clinician Scientist Award from the MRC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas J. Hudson or Andrea Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engert, J., Bérubé, P., Mercier, J. et al. ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 24, 120–125 (2000). https://doi.org/10.1038/72769

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing