Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global elimination of trachoma: How frequently should we administer mass chemotherapy?

Abstract

The World Health Organization has recommended repeat mass drug administration as part of their global initiative to eliminate blinding trachoma by the year 2020. The efficacy of repeat treatment will be tested empirically, but the results will not be available for many years, and recommendations for the necessary frequency of treatment are needed immediately. We have developed a mathematical model that uses available epidemiological data from a variety of countries. We recommend, based on our analysis, that in areas where trachoma is moderately prevalent (<35% in children), it should be treated annually, but hyperendemic areas (>50% in children), it should be treated biannually.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2: Estimated initial doubling times and necessary treatment periods for various communities.
Figure 3: Simulations of the time course of active trachoma infection (in children 1–10 years old) with repeated mass drug administration.
Figure 4: The necessary frequency of treatments that will ensure the eventual elimination of active trachoma if only individuals under a certain age are treated, based on age prevalences from Malawi.
Figure 1: In this model, individuals of age i are assumed to be either clinically active (that is, by clinical examination, seem to be infected with C. trachomatis) or susceptible.

Similar content being viewed by others

References

  1. Report of the First Meeting of the W.H.O. Alliance for the Global Elimination of Trachoma. (World Health Organization, Geneva, 1997).

  2. Report of the Second Meeting of the W.H.O. Alliance for the Global Elimination of Trachoma. (World Health Organization, Geneva, 1998).

  3. Schachter, J. et al. Azithromycin in control of trachoma 3. in Chlamydial Infections: Proceedings of the Ninth International Symposium on Human Chlamydial Infection (eds. Stephens, R. et al.) 347– 350 (International Chlamydia Symposium, Napa, California, 1998).

    Google Scholar 

  4. Mabey, D. et al. Azithromycin in control of trachoma 2. in Chlamydial Infections: Proceedings of the Ninth International Symposium on Human Chlamydial Infection (eds. Stephens, R. et al.) 351– 354 (International Chlamydia Symposium, Napa, California, 1998).

    Google Scholar 

  5. Dawson, C. et al. in Chlamydial Infections: Proceedings of the Ninth International Symposium on Human Chlamydial Infection (eds. Stephens, R. et al.) 352–355 (International Chlamydia Symposium, Napa, California, 1998).

    Google Scholar 

  6. West, S. et al. Nonocular Chlamydia infection and risk of ocular reinfection after mass treatment in a trachoma hyperendemic area. Invest. Ophthalmol. Vis. Sci. 34, 3194–3198 (1993).

    CAS  PubMed  Google Scholar 

  7. Thylefors, B. The World Health Organization's programme for the prevention of blindness. Int. Ophthalmol. 14, 211– 219 (1990).

    Article  CAS  Google Scholar 

  8. Muñoz, B. & West, S. Trachoma: the forgotten cause of blindness. Epidemiol. Rev. 19, 205–217 (1997).

    Article  Google Scholar 

  9. McCormack, W.M. et al. Fifteen-month follow-up study of women infected with Chlamydia trachomatis. N. Engl. J. Med. 300, 123– 125 (1979).

    Article  CAS  Google Scholar 

  10. Thygeson, P., Hanna, L., Dawson, C., Zichosh, J. & Jawetz, E. Inoculation of Human Volunteer with Egg Grown Inclusion Conjunctivitis Virus. Am. J. Ophthalmol. 53, 786–795 (1962).

    Article  CAS  Google Scholar 

  11. Dawson, C.R. et al. Experimental inclusion conjunctivities in man: partial resistance to reinfection. Am. J. Epidemiol. 84, 411 –425 (1966).

    Article  CAS  Google Scholar 

  12. Taylor, H.R. et al. Longitudinal study of the microbiology of endemic trachoma. J. Clin. Microbiol. 29, 1593– 1595 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hayes, L.J. et al. Extent and kinetics of genetic change in the omp1 gene of Chlamydia trachomatis in two villages with endemic trachoma. J. Infect. Dis. 172, 268–272 (1995).

    Article  CAS  Google Scholar 

  14. Bobo, L.D. et al. Severe disease in children with trachoma is associated with persistent Chlamydia trachomatis infection. J. Infect. Dis. 176, 1524–1530 (1997).

    Article  CAS  Google Scholar 

  15. Ngochaduong, T. Medical Statistics, 1–75 (Masters thesis, London School of Hygiene and Tropical Medicine) (1995).

    Google Scholar 

  16. Courtright, P., Sheppard, J., Schachter, J., Said, M.E. & Dawson, C.R. Trachoma and blindness in the Nile Delta: current patterns and projections for the future in the rural Egyptian population. Br. J. Ophthalmol. 73, 536– 540 (1989).

    Article  CAS  Google Scholar 

  17. Altman, L. Effort to halt blinding disease worldwide with single-dose drug. in The New York Times A1 and 7 ( 1998).

  18. Steingrímsson, O. et al. Single dose azithromycin treatment of gonorrhea and infections caused by C. trachomatis and U. urealyticum in men. Sex. Transm. Dis. 21, 43–46 ( 1994).

    Article  Google Scholar 

  19. Stamm, W.E. et al. Azithromycin for empirical treatment of the nongonococcal urethritis syndrome in men. A randomized double-blind study. J. Am. Med. Assoc. 274, 545–549 (1995).

    Article  CAS  Google Scholar 

  20. Erdogru, T. et al. The treatment of non-gonococcal urethritis with single dose oral azithromycin. J. Int. Med. Res. 23, 386–393 (1995).

    Article  CAS  Google Scholar 

  21. Magid, D., Douglas, J.M., Jr. & Schwartz, J.S. Doxycycline compared with azithromycin for treating women with genital Chlamydia trachomatis infections: an incremental cost-effectiveness analysis. Ann. Intern. Med. 124, 389–399 (1996).

    Article  CAS  Google Scholar 

  22. Thorpe, E.M., Jr. et al. Chlamydial cervicitis and urethritis: single dose treatment compared with doxycycline for seven days in community based practises. Genitourin. Med. 72, 93– 97 (1996).

    PubMed  PubMed Central  Google Scholar 

  23. Hillis, S.D. et al. Doxycycline and azithromycin for prevention of chlamydial persistence or recurrence one month after treatment in women. A use-effectiveness study in public health settings. Sex. Transm. Dis. 25, 5–11 (1998).

    Article  CAS  Google Scholar 

  24. Wehbeh, H.A., Ruggeirio, R.M., Shahem, S., Lopez, G. & Ali, Y. Single-dose azithromycin for Chlamydia in pregnant women. J. Reprod. Med. 43, 509 –514 (1998).

    CAS  PubMed  Google Scholar 

  25. Bianchi, A. et al. Kinetics of Chlamydia trachomatis clearance in patients with azithromycin, as assessed by first void urine testing by PCR and transcription-mediated amplification. Sex. Transm. Dis. 25, 366 –367 (1998).

    Article  CAS  Google Scholar 

  26. Blower, S. & Dowlatabadi, H. Analysis of Complex Models of Disease Transmission: an HIV Model, as an Example. Int. Stat. Rev. 62, 229–243 ( 1994).

    Article  Google Scholar 

  27. Dietz, K. Models for parasitic disease control. Bull. Int. Stat. Inst. 40, 531–544 (1975).

    Google Scholar 

  28. Dietz, K. & Renner, H. in Lecture Notes in Biomathemtics , Vol. 57 (eds. Capasso, V., Grusso, E. & Paveri-Fontana, S.L.) 115–126 (Springer-Verlag, New York, 1985).

    Google Scholar 

  29. Tielsch, J.M. et al. The epidemiology of trachoma in southern Malawi. Am. J. Trop. Med. Hyg. 38, 393–399 (1988).

    Article  CAS  Google Scholar 

  30. Taylor, H.R. et al. The epidemiology of infection in trachoma. Invest. Ophthalmol. Vis. Sci. 30, 1823–1833 (1989).

    CAS  PubMed  Google Scholar 

  31. Ward, M. et al. Persisting inapparent chlamydial infection in a trachoma endemic community in The Gambia. Scand. J. Infect. Dis. Suppl. 69, 137–148 (1990).

    CAS  PubMed  Google Scholar 

  32. Baral, K. et al. Reliability of the Ocular Examination in Detecting Chlamydia in an Area of Nepal with a Low Prevalence of Trachoma. Bull. World Health Org. (in the press).

  33. Bailey, R.L. et al. Molecular epidemiology of trachoma in a Gambian village. Br. J. Ophthalmol. 78, 813–817 (1994).

    Article  CAS  Google Scholar 

  34. Bailey, R., Osmond, C., Mabey, D.C., Whittle, H.C. & Ward, M.E. Analysis of the household distribution of trachoma in a Gambian village using a Monte Carlo simulation procedure. Int. J. Epidemiol. 18, 944–951 (1989).

    Article  CAS  Google Scholar 

  35. Arno, J.N. et al. Age and clinical immunity to infections with Chlamydia trachomatis. Sex. Transm. Dis. 21, 47– 52 (1994).

    Article  CAS  Google Scholar 

  36. Schachter, J. & Dawson, C. in Human Chlamydial Infections, 35 (PSG Publishing, Littleton, Massachusetts, 1978).

    Google Scholar 

  37. Bailey, R.L., Arullendran, P., Whittle, H.C. & Mabey, D.C. Randomised controlled trial of single-dose azithromycin in treatment of trachoma. Lancet 342, 453–456 (1993).

    Article  CAS  Google Scholar 

  38. Anderson, R. & May, R. in Infectious Diseases of Humans: Dynamics and Control, 62, 172–192 (Oxford University Press, Oxford, 1991).

    Google Scholar 

  39. Assad, F.A. & Maxwell-Lyons, F. The use of catalytic models as tools for elucidating the clinical and epidemiological features of trachoma. Bull. World Health Org. 34, 341– 355 (1958).

    Google Scholar 

  40. Muñoz, B., West, S. & Aron, J. Dynamics of transmission and progression of trachoma in hyperendemic areas in Annual Meeting of the Society for Mathematical Biology (Oaxtepec, Mexico, 1995).

    Google Scholar 

  41. Ward, M., Hawkins, J. & Shahani, A. in Proceedings of the Seventh International Symposium on Human Chlamydial Infection (eds. Bowie, W. & Robert, W.) 591–594 (Cambridge University Press, Harrison Hot Springs, Canada, 1990).

    Google Scholar 

  42. Blower, S.M., Small, P.M. & Hopewell, P.C. Control strategies for tuberculosis epidemics: new models for old problems. Science 273, 497 –500 (1996).

    Article  CAS  Google Scholar 

  43. Blower, S.M., Hartel, D., Dowlatabadi, H., Anderson, R.M. & May, R.M. Drugs, sex and HIV: a mathematical model for New York City. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 331, 171–187 ( 1991).

    Article  CAS  Google Scholar 

  44. Blower, S.M. et al. The intrinsic transmission dynamics of tuberculosis epidemics. Nature Med. 1, 815–821 (1995).

    Article  CAS  Google Scholar 

  45. Porco, T.C. & Blower, S.M. Quantifying the intrinsic transmission dynamics of tuberculosis. Theor. Popul. Biol. 54, 117–132 (1998).

    Article  CAS  Google Scholar 

  46. Blower, S.M., Porco, T.C. & Darby, G. Predicting and preventing the emergence of antiviral drug resistance in HSV-2. Nature Med. 4, 673–678 (1998).

    Article  CAS  Google Scholar 

  47. Sanchez, M.A. & Blower, S.M. Uncertainty and sensitivity analysis of the basic reproductive rate. Tuberculosis as an example. Am. J. Epidemiol. 145, 1127–1137 (1997).

    Article  CAS  Google Scholar 

  48. Hethcote, H. in Modeling Heterogeneous Mixing in Infectious Disease Dynamics. Models for Infectious Human Diseases: Their Structure and Relation to Data (eds. Isham, V. & Medley, G.) 215–238 (Cambridge University Press, Cambridge, 1996).

    Book  Google Scholar 

  49. Gupta, S., Anderson, R.M. & May, R.M. Networks of sexual contacts: implications for the pattern of spread of HIV. AIDS 3, 807– 817 (1989).

    Article  CAS  Google Scholar 

  50. Dawson, C.R., Daghfous, T., Messadi, M., Hoshiwara, I. & Schachter, J. Severe endemic trachoma in Tunisia. Br. J. Ophthalmol. 60, 245– 252 (1976).

    Article  CAS  Google Scholar 

  51. West, S.K., Munoz, B., Turner, V.M., Mmbaga, B.B. & Taylor, H.R. The epidemiology of trachoma in central Tanzania. Int. J. Epidemiol. 20, 1088– 1092 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Ziv, H. Gershengorn, K. Koelle, S. Osaki, J.P. Whitcher and J. Schachter fokr comments and A. Edgecombe for technical assostance. We are grateful to the National Institute of Allergy and Infectious Diseases (Grants K08 Al 01-441-0 and 1R01 A1 41935).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Lietman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lietman, T., Porco, T., Dawson, C. et al. Global elimination of trachoma: How frequently should we administer mass chemotherapy?. Nat Med 5, 572–576 (1999). https://doi.org/10.1038/8451

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing