Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Organ-specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease

Abstract

Most pathogenic mtDNA mutations are heteroplasmic and there is a clear correlation between high levels of mutated mtDNA in a tissue and pathology. We have found that in vivo double-strand breaks (DSBs) in mtDNA lead to digestion of cleaved mtDNA and replication of residual mtDNA. Therefore, if DSB could be targeted to mutations in mtDNA, mutant genomes could be eliminated and the wild-type mtDNA would repopulate the cells. This can be achieved by using mitochondria-targeted restriction endonucleases as a means to degrade specific mtDNA haplotypes in heteroplasmic cells or tissues. In this work, we investigated the potential of systemic delivery of mitochondria-targeted restriction endonucleases to reduce the proportion of mutant mtDNA in specific tissues. Using the asymptomatic NZB/BALB mtDNA heteroplasmic mouse as a model, we found that a mitochondria-targeted ApaLI (that cleaves BALB mtDNA at a single site and does not cleave NZB mtDNA) increased the proportion of NZB mtDNA in target tissues. This was observed in heart, using a cardiotropic adeno-associated virus type-6 (AAV6) and in liver, using the hepatotropic adenovirus type-5 (Ad5). No mtDNA depletion or loss of cytochrome c oxidase activity was observed in any of these tissues. These results show the potential of systemic delivery of viral vectors to specific organs for the therapeutic application of mitochondria-targeted restriction enzymes in mtDNA disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW et al. Prevalence of mitochondrial DNA disease in adults. Ann Neurol 2008; 63: 35–39.

    Article  CAS  PubMed  Google Scholar 

  2. Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, Darin N et al. Mitochondrial disease: a practical approach for primary care physicians. Pediatrics 2007; 120: 1326–1333.

    Article  PubMed  Google Scholar 

  3. Horvath R, Gorman G, Chinnery PF . How can we treat mitochondrial encephalomyopathies? Approaches to therapy. Neurotherapeutics 2008; 5: 558–568.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Zeviani M, Carelli V . Mitochondrial disorders. Curr Opin Neurol 2007; 20: 564–571.

    Article  CAS  PubMed  Google Scholar 

  5. Holmgren D, Wahlander H, Eriksson BO, Oldfors A, Holme E, Tulinius M . Cardiomyopathy in children with mitochondrial disease; clinical course and cardiological findings. Eur Heart J 2003; 24: 280–288.

    Article  CAS  PubMed  Google Scholar 

  6. Towbin JA . Mitochondrial cardiology. In: Di Mauro S, Hirano M, Schon EA (eds). Mitochondrial Medicine. Informa Healthcare: Oxon, 2006, pp 75–103.

    Chapter  Google Scholar 

  7. Scaglia F, Towbin JA, Craigen WJ, Belmont JW, Smith EO, Neish SR et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 2004; 114: 925–931.

    Article  PubMed  Google Scholar 

  8. Lee WS, Sokol RJ . Mitochondrial hepatopathies: advances in genetics and pathogenesis. Hepatology 2007; 45: 1555–1565.

    Article  CAS  PubMed  Google Scholar 

  9. Vallance HD, Jeven G, Wallace DC, Brown MD . A case of sporadic infantile histiocytoid cardiomyopathy caused by the A8344G (MERRF) mitochondrial DNA mutation. Pediatr Cardiol 2004; 25: 538–540.

    Article  CAS  PubMed  Google Scholar 

  10. Wallace DC, Brown MD, Lott MT . Mitochondrial DNA variation in human evolution and disease. Gene 1999; 238: 211–230.

    Article  CAS  PubMed  Google Scholar 

  11. Chomyn A, Martinuzzi A, Yoneda M, Daga A, Hurko O, Johns D et al. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci USA 1992; 89: 4221–4225.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hanna MG, Nelson IP, Morgan-Hughes JA, Harding AE . Impaired mitochondrial translation in human myoblasts harbouring the mitochondrial DNA tRNA lysine 8344 A-->G (MERRF) mutation: relationship to proportion of mutant mitochondrial DNA. J Neurol Sci 1995; 130: 154–160.

    Article  CAS  PubMed  Google Scholar 

  13. Bayona-Bafaluy MP, Blits B, Battersby BJ, Shoubridge EA, Moraes CT . Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc Natl Acad Sci USA 2005; 102: 14392–14397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tanaka M, Borgeld HJ, Zhang J, Muramatsu S, Gong JS, Yoneda M et al. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 2002; 9: 534–541.

    CAS  PubMed  Google Scholar 

  15. Alexeyev MF, Venediktova N, Pastukh V, Shokolenko I, Bonilla G, Wilson GL . Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther 2008; 15: 516–523.

    Article  CAS  PubMed  Google Scholar 

  16. Bacman SR, Williams SL, Hernandez D, Moraes CT . Modulating mtDNA heteroplasmy by mitochondria-targeted restriction endonucleases in a ‘differential multiple cleavage-site’ model. Gene Ther 2007; 14: 1309–1318.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Palomeque J, Chemaly ER, Colosi P, Wellman JA, Zhou S, Del Monte F et al. Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo. Gene Ther 2007; 14: 989–997.

    Article  CAS  PubMed  Google Scholar 

  18. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE . Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 2008; 16: 1073–1080.

    Article  CAS  PubMed  Google Scholar 

  19. Huard J, Lochmuller H, Acsadi G, Jani A, Massie B, Karpati G . The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther 1995; 2: 107–115.

    CAS  PubMed  Google Scholar 

  20. Jenuth JP, Peterson AC, Shoubridge EA . Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 1997; 16: 93–95.

    Article  CAS  PubMed  Google Scholar 

  21. Satoh M, Kuroiwa T . Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res 1991; 196: 137–140.

    Article  CAS  PubMed  Google Scholar 

  22. Koene S, Smeitink J . Mitochondrial medicine: entering the era of treatment. J Intern Med 2009; 265: 193–209.

    Article  CAS  PubMed  Google Scholar 

  23. Srivastava S, Moraes CT . Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum Mol Genet 2001; 10: 3093–3099.

    Article  CAS  PubMed  Google Scholar 

  24. Gardner JL, Craven L, Turnbull DM, Taylor RW . Experimental strategies towards treating mitochondrial DNA disorders. Biosci Rep 2007; 27: 139–150.

    Article  CAS  PubMed  Google Scholar 

  25. Baker AH, McVey JH, Waddington SN, Di Paolo NC, Shayakhmetov DM . The influence of blood on in vivo adenovirus bio-distribution and transduction. Mol Ther 2007; 15: 1410–1416.

    Article  CAS  PubMed  Google Scholar 

  26. Sorensen L, Ekstrand M, Silva JP, Lindqvist E, Xu B, Rustin P et al. Late-onset corticohippocampal neurodepletion attributable to catastrophic failure of oxidative phosphorylation in MILON mice. J Neurosci 2001; 21: 8082–8090.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Srivastava S, Moraes CT . Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Hum Mol Genet 2005; 14: 893–902.

    Article  CAS  PubMed  Google Scholar 

  28. Fukui H, Moraes CT . Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons. Hum Mol Genet 2009; 18: 1028–1036.

    Article  CAS  PubMed  Google Scholar 

  29. Bacman SR, Williams SL, Moraes CT . Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res 2009; 37: 4218–4226.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C, Qiao C et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci USA 2009; 106: 3946–3951.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Blankinship MJ, Gregorevic P, Allen JM, Harper SQ, Harper H, Halbert CL et al. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther 2004; 10: 671–678.

    Article  CAS  PubMed  Google Scholar 

  32. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Everett RS, Hodges BL, Ding EY, Xu F, Serra D, Amalfitano A . Liver toxicities typically induced by first-generation adenoviral vectors can be reduced by use of E1, E2b-deleted adenoviral vectors. Hum Gene Ther 2003; 14: 1715–1726.

    Article  CAS  PubMed  Google Scholar 

  34. Nicklin SA, Wu E, Nemerow GR, Baker AH . The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther 2005; 12: 384–393.

    Article  CAS  PubMed  Google Scholar 

  35. Kishi Y, Kuba K, Nakamura T, Wen J, Suzuki Y, Mizuno S et al. Systemic NK4 gene therapy inhibits tumor growth and metastasis of melanoma and lung carcinoma in syngeneic mouse tumor models. Cancer Sci 2009; 100: 1351–1358.

    Article  CAS  PubMed  Google Scholar 

  36. Sullivan DE, Dash S, Du H, Hiramatsu N, Aydin F, Kolls J et al. Liver-directed gene transfer in non-human primates. Hum Gene Ther 1997; 8: 1195–1206.

    Article  CAS  PubMed  Google Scholar 

  37. Shayakhmetov DM, Li ZY, Ni S, Lieber A . Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol 2004; 78: 5368–5381.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Boquet MP, Wonganan P, Dekker JD, Croyle MA . Influence of method of systemic administration of adenovirus on virus-mediated toxicity: focus on mortality, virus distribution, and drug metabolism. J Pharmacol Toxicol Methods 2008; 58: 222–232.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A . Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res 2008; 36: 3926–3938.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Segura MM, Monfar M, Puig M, Mennechet F, Ibanes S, Chillon M . A real-time PCR assay for quantification of canine adenoviral vectors. J Virol Methods 2010; 163: 129–136.

    Article  CAS  PubMed  Google Scholar 

  41. Sommer JM, Smith PH, Parthasarathy S, Isaacs J, Vijay S, Kieran J et al. Quantification of adeno-associated virus particles and empty capsids by optical density measurement. Mol Ther 2003; 7: 122–128.

    Article  CAS  PubMed  Google Scholar 

  42. Moraes CT, Ricci E, Petruzzella V, Shanske S, DiMauro S, Schon EA et al. Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Nat Genet 1992; 1: 359–367.

    Article  CAS  PubMed  Google Scholar 

  43. Diaz F, Thomas CK, Garcia S, Hernandez D, Moraes CT . Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum Mol Genet 2005; 14: 2737–2748.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to James M Allen and Jeffrey S Chamberlain for help preparing high titers of AAV6 and advice. This work was supported by PHS grant EY10804, NS041777, CA85700 and the Muscular Dystrophy Association to CTM. This project had the support of the core grant 5P30EY014801-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C T Moraes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacman, S., Williams, S., Garcia, S. et al. Organ-specific shifts in mtDNA heteroplasmy following systemic delivery of a mitochondria-targeted restriction endonuclease. Gene Ther 17, 713–720 (2010). https://doi.org/10.1038/gt.2010.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.25

Keywords

This article is cited by

Search

Quick links