Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Human antibodies by design

Abstract

Monoclonal antibodies (Mabs) have long been considered a good class of natural drugs, both because they mimic their natural role in the body and because they have no inherent toxicity. Although rodent Mabs are readily generated, their widespread use as therapeutic agents has been hampered because they are recognized as foreign by the patient. Evidently, clinical Mabs should be as human as possible and results with some of the more recently developed chimerized and humanized Mabs are testimony to this. Mabs that are entirely human are now being produced from phage display and transgenic mice. The first fully human Mabs generated by phage display have already entered clinical trials, and together with recent advances in these technologies, may finally realize the full potential of antibodies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kohler, G. and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of pre-defined specificity. Nature 256: 495–497.

    CAS  PubMed  Google Scholar 

  2. Johnson, K.S. and Glover, D.R. 1998. Antibodies come in from the cold. Innovations in Pharmaceutical Technology. In press.

    Google Scholar 

  3. Larrick, J.W., Wallace, E.F., Coloma, M.J., Bruderer, U., Lang, A.B., and Fry, K.E. 1992. Therapeutic human antibodies derived from PCR amplification of B-cell variable regions. Immunol. Rev. 130: 69–85.

    Article  CAS  PubMed  Google Scholar 

  4. Adair, J.R. and Bright, S.M. 1995. Progress with humanized antibodies—an update. Expert Opinion on Investigational Drugs 4: 863–870.

    Article  Google Scholar 

  5. Neuberger, M.S., Williams, G.T., and Fox, R.O. 1994. Recombinant antibodies possessing novel effector functions. 1984. Nature 312: 604–608.

    Article  Google Scholar 

  6. Boulianne, G.L., Hozumi, N., and Shulman, M.J. 1984. Production of functional chimeric mouse/human antibody. Nature 312: 643–646.

    Article  CAS  PubMed  Google Scholar 

  7. LoBuglio, A.F., Wheeler, R.H., Trang, J., Haynes, A., Rogers, K., Harvey, E.B. et al. 1989. Mouse/human chimeric monoclonal antibody in man: kinetics and immune response. Proc. Natl. Acad. Sci. USA 86: 4220–4224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khazaeli, M.B., Saleh, M.N., Liu, T.P., Meredith, R.F., Wheeler, R.H., Baker, T.S. et al. 1991. Pharmacokinetics and immune response of 131l-chimeric mouse/human B72.3 (human γ4) monoclonal antibody in humans. Cancer Research 51: 5461–5466.

    CAS  PubMed  Google Scholar 

  9. Elliott, M.J., Maini, R.N., Feldmann, M., Long-Fox, A., Charles, P., Bijl, H. et al. 1994. Repeated therapy with monoclonal antibody to tumour necrosis factor α (cA2) in patients with rheumatoid arthritis. Lancer 344: 1125–1127.

    Article  CAS  Google Scholar 

  10. Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S., and Winter, G. 1986. Replacing the complimentarity-determining regions in a human antibody with those from a mouse. Nature 321: 522–525.

    Article  CAS  PubMed  Google Scholar 

  11. Riechmann, L., Clark, M., Waldmann, H., and Winter G. 1988. Reshaping human antibodies for therapy. Nature 332: 323–327.

    Article  CAS  PubMed  Google Scholar 

  12. Padlan, E.A. 1994. Anatomy of the antibody molecule. Mol. Immunol. 31: 169–217.

    Article  CAS  PubMed  Google Scholar 

  13. Graziano, R.F., Tempest, P.R., White, P., Kelar, T., Deo, Y., Ghebremariam, H. et al. 1995. Construction and characterization of a humanized anti-γ-immunoglobulin receptor type I (FcγRI) monoclonal antibody. J. Immunol. 155: 4996–5002.

    CAS  PubMed  Google Scholar 

  14. Foote, J. and Winter, G. 1992. Antibody framework residues affecting the conformation of the hypervariable loops. J. Mol. Biol. 224: 487–499.

    Article  CAS  PubMed  Google Scholar 

  15. Queen, C., Schneider, W.P., Selick, H.E., Payne, P.W., Landolfi, N.F., Duncan, J.F. et al. 1989 A humanized antibody that binds to the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA 86: 10029–10033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Padlan, E.A. 1991. A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol. Immunol. 28: 489–498.

    Article  CAS  PubMed  Google Scholar 

  17. Roguska, M.A., Pederson, J.T., Keddy, C.A., Henry, A.H., Searle, S.J., Lambert, J.M. et al. 1994. Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc. Natl. Acad. Sci. USA 91: 969–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hale, G., Dyer, M.J., Clark, M.R., Phillips, J.M., Marcus, R., Riechmann, L. et al. 1988. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancer ii: 1394–1399.

    Article  Google Scholar 

  19. Matteson, E.L., Yokum, D.E., St Clair, E.W., Achkar, A.A., Thakor, M.S., Jacobs, M.R. et al. 1995. Treatment of active refractory rheumatoid arthritis with humanized monoclonal antibody CAMPATH-1H administered by daily subcutaneous injection. Arthritis and Rheumatism 38: 1187–1193.

    Article  CAS  PubMed  Google Scholar 

  20. Weinblatt, M.E., Maddison, P.J., Bulpitt, K.J., Hazelman, B.L., Urowitz, M.B., Sturrock, R.D. et al. 1995. CAMPATH-1H, a humanized monoclonal antibody, in refractory rheumatoid arthritis: an intravenous dose-escalation study. Arthritis and Rheumatism 38: 1589–1594.

    Article  CAS  PubMed  Google Scholar 

  21. Caron, P.C., Jurcic, J.G., Scott, A.M., Finn, R.D., Divgi, C.R., Graham, M.C. et al. 1994. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood 83: 1760–1768.

    CAS  PubMed  Google Scholar 

  22. Hakimi, J., Mould, D., Waldmann, T.A., Queen, C., Anasetti, C, and Light, S. 1997. Development of Zenapax: a humanized anti-Tac antibody, pp. 277–300 in Antibody therapeutics. Harris, W.J. and Adair, J.R. (eds.). CRC Press, Boca Raton, FL.

    Google Scholar 

  23. Aujame, L., Geoffroy, F. and Sodoyer, R. 1997. High affinity human antibodies by phage display. Human Antibodies 8: 155–168.

    Article  CAS  PubMed  Google Scholar 

  24. McCafferty, J., Griffiths, A.D., Winter, G. and Chiswell, D.J. 1990. Phage antibodies: Filamentous phage displaying antibody variable domains. Nature 348: 552–554.

    Article  CAS  PubMed  Google Scholar 

  25. Winter, G., Griffiths, A.D., Hawkins, R.E. and Hoogenboom, H.R. 1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12: 433–455.

    Article  CAS  PubMed  Google Scholar 

  26. Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., and Crosby, W.L. et al. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C. et al. 1996. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotechnology 14: 309–314.

    Article  CAS  PubMed  Google Scholar 

  28. Schier, R., McCall, A., Adams, G.P., Marshall, K.W., Merrit, H., Yim, M. et al. 1996. Isolation of picomolar anti-c-erbB-2 single chain Fv by molecular evolution of the complementarity determining regions in the centre of the antibody binding site. J. Mol. Biol. 263: 551–567

    Article  CAS  PubMed  Google Scholar 

  29. Xie, M.-H., Yuan, J., Adams, C., and Gurney, A. 1997. Direct demonstration of MuSK involvement in acetylcholine receptor clustering through identification of agonist ScFv. Nature Biotechnology 15: 768–771.

    Article  CAS  PubMed  Google Scholar 

  30. Hawkins, R.E. and Winter, G. 1992. Cell selection strategies for making antibodies from variable gene libraries: tapping the memory pool. Eur. J. Immunol. 22: 867–870.

    Article  CAS  PubMed  Google Scholar 

  31. Thompson, J., Pope, A., Tung-Chan, J.S., Hollis, G., Mark, G., and Johnson, K.S. 1996. Affinity maturation of a high-affinity human monoclonal antibody against the third hypervariable loop of human immunodeficiency virus: use of phage display to improve affinity and broaden strain reactivity. J. Mol. Biol. 256: 77–88.

    Article  CAS  PubMed  Google Scholar 

  32. Yang, W.P., Green, K., Pinz-Sweeney, S., Briones, A.T., Burton, D.R., and Barbas, C.F. 1995. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254: 392–403.

    Article  CAS  PubMed  Google Scholar 

  33. Parsons, H.L., Earnshaw, J.C., Wilton, J., Johnson, K.S., Schueler, P.A., Mahoney, W., and McCafferty, J. 1996. Directing phage selections towards specific epitopes. Protein Eng. 9: 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  34. Osbourn, J.K., Derbyshire, E.J., Vaughan, T.J., Field, A.W., and Johnson, K.S. 1998. Pathfinder selection; in situ isolation of novel antibodies. Immunotechnology 3: 293–302.

    Article  CAS  PubMed  Google Scholar 

  35. Siegel, D. 1995. Isolation of human anti-red blood cell antibodies by repertoire cloning. Annals of the New York Academy of Science 764: 547–558.

    Article  CAS  Google Scholar 

  36. Kruif, J., Terstappen, L., Boel, E., and Logtenberg, T. 1995. Rapid selection of cell subpopulation-specific human monoclonal antibodies from a synthetic phage antibody library. Proc. Natl. Acad. Sci. USA 92: 3938–3942.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jespers, L.S., Roberts, A., Mahler, S.M., and Winter, G., Hoogenboom, H.R. 1994. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Bio/Technology 12: 899–903.

    CAS  Google Scholar 

  38. Nissim, A., Hoogenboom, H.R., Tomlinson, I.M., Flynn, G., Midgley, C., Lane, D. et al. 1994. Antibody fragments from a “single pot” phage display library as immunological reagents. EMBO J. 13: 692–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, L., Radic, M.Z., Siegel, D., Chang, T., Bracy, J., and Galili, U. 1997. Cloning of anti-Gal Fabs from combinatorial phage display libraries: structural analysis and comparison of Fab expression in pComb3H and pComb8 phage. Mol. Immunol. 34: 609–618.

    Article  CAS  PubMed  Google Scholar 

  40. Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., McCafferty, J. et al. 1993. Human anti-self antibodies with high specificity from phage display libraries. EMBO J. 12: 725–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai, X., and Garen, A. 1995. Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumour cells: selection of specific antibodies from single-chain Fv fusion phage libraries. Proc. Natl. Acad. Sci. USA 92: 6537–6541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pasqualini, R. and Ruoslahti, E. 1996. Organ targeting in vivo using phage display peptide libraries. Nature 380: 364–366.

    Article  CAS  PubMed  Google Scholar 

  43. Hoogenboom, H.R. 1995. Designing and optimizing library selection strategies for generating high-affnity antibodies. Trends in Biotechnology 15: 62–70.

    Article  Google Scholar 

  44. Marks, J.D., Griffiths, A.D., Malmqvist, M., Clackson, T.P., Bye, J.M., and Winter, G. 1992. By-passing immunisation: building high affinity human antibodies by chain shuffling. Bio/Technology 10: 779–783.

    CAS  Google Scholar 

  45. Low, N.M., Holliger, P., and Winter, G. 1996. Mimicking somatic hypermutation; affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J. Mol. Biol. 250: 359–368.

    Article  Google Scholar 

  46. Patten, P.A., Howard, R.J., and Stemmer, W.P. 1997. Applications of DNA shuffling to Pharmaceuticals and vaccines. Curr. Opin. Biotechnol. 8: 724–733.

    Article  CAS  PubMed  Google Scholar 

  47. Hawkins, R.E., Russell, S.J., and Winter, G. 1992. Selection of phage antibodies by binding affinity: mimicking affinity maturation. J. Mol. Biol. 226: 889–896.

    Article  CAS  PubMed  Google Scholar 

  48. CAT initiates first clinical trial. SCRIP. 1997. No. 2258:pg 7.

  49. Brüggemann, M., and Neuberger, M.S. 1996. Strategies for expressing human antibody repertoires in transgenic mice. Immunol. Today 17: 391–397.

    Article  PubMed  Google Scholar 

  50. Jakobovits, A. 1995. Production of fully human antibodies by transgenic mice. Curr. Opin. Biotechnol. 6: 561–566.

    Article  CAS  PubMed  Google Scholar 

  51. Brüggemann, M. and Taussig, M.J. 1997. Production of human antibody repertoires in transgenic mice. Curr. Opin. Biotechnol. 8: 455–458.

    Article  PubMed  Google Scholar 

  52. www.mrc-cpe.ac.uk/imt-doc/public/INTRO.html— Tomlinson, I.M., Williams, S.C., Corbett, S.J., Cox, J.P.L., and Winter, G. . 1997. V Base: the database of human antibody genes. MRC Centre for Protein Engineering, Cambridge, UK.

  53. Lonberg, N., Taylor, L.D., Harding, F.A., Trounstine, M., Higgins, M., Schramm, S.R. et al. 1994. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 368: 856–859.

    Article  CAS  PubMed  Google Scholar 

  54. Brüggemann, M., Caskey, H.M., Teale C., Waldmann, H., Williams, G.T., Suran, M.A. et al. 1989. A repertoire of monoclonal antibodies with human heavy-chains from transgenic mice. Proc. Natl. Acad. Sci. USA 86: 6709–6713.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wagner, S.D., Popov, A.V., Davies, S.L., Xian, J., Neuberger, M.S., and Brüuggemann, M. 1994. The diversity of antigen-specific monoclonal antibodies from transgenic mice bearing human immunoglobulin gene miniloci. Eur. J. Immunol. 42: 2672–2681.

    Article  Google Scholar 

  56. Green, L.L., Hardy, M.H., Maynard-Currie, C.E., Tsuda, H., Louie, D.M., Mendez, M.J. et al. 1994. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACS. Nature Genet. 7: 13–21.

    Article  CAS  PubMed  Google Scholar 

  57. Popov, A.V., Bützler, C., Frippiat, J-P., Lefranc, M.P., and Brüggemann, M. 1996. Assembly and extension of yeast artificial chromosomes to build up a large locus. Gene 177: 195–205.

    Article  CAS  PubMed  Google Scholar 

  58. Mendez, M.J., Green, L.L., Corvalan, J.R.F., Jia, X.-C., Maynard-Currie, C.E., Yang, X-d. et al. 1997. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat. Gen. 15: 146–156.

    Article  CAS  Google Scholar 

  59. Fishwild, D.M., O'Donnell, S.L., Bengoechea, T., Hudson, D.V., Harding, F.S.L. et al. 1996 High-avidity human IgK monoclonal antibodies from a novel strain of minilocus transgenic mice. Nature Biotechnology 14: 845–851.

    Article  CAS  PubMed  Google Scholar 

  60. Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G. 1991. By-passing immunisation: human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222: 581–597.

    Article  CAS  PubMed  Google Scholar 

  61. Nisonoff, A., Hopper, J.E., and Spring, S.B. 1975. p. 5 in The antibody molecule. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan, T., Osbourn, J. & Tempest, P. Human antibodies by design. Nat Biotechnol 16, 535–539 (1998). https://doi.org/10.1038/nbt0698-535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0698-535

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing