Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation

Abstract

Ocular retardation (or) is a murine eye mutation causing microphthalmia, a thin hypocellular retina and optic nerve aplasia. Here we show that mice carrying the orJ allele have a premature stop codon in the homeobox of the Chx1O gene, a gene expressed at high levels in uncommitted retinal progenitor cells and mature bipolar cells. No CHX10 protein was detectable in the retinal neuroepithelium of orJ homozygotes. The loss of CHX10 leads both to reduced proliferation of retinal progenitors and to a specific absence of differentiated bipolar cells. Other major retinal cell types were present and correctly positioned in the mutant retina, although rod outer segments were short and retinal lamination was incomplete. These results indicate that Chx10 is an essential component in the network of genes required for the development of the mammalian eye, with profound effects on retinal progenitor proliferation and bipolar cell specification or differentiation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cepko, C., Austin, C.P., Yang, X., Alexiades, M. & Ezzeddine, D. Cell fate determination in the vertebrate retina. Proc. Natl. Acad. Sci. USA 93, 589–595 (1996).

    Article  CAS  Google Scholar 

  2. Hill, R.E. et al. Mouse small eye results from mutations in a paired-like 31. homeobox- containing gene [published erratum appears in Nature 355, 750 (1992)]. Nature 354, 522–525 (1991).

    Article  CAS  Google Scholar 

  3. Kastner, P. et al. Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78, 987–1003 (1994).

    Article  CAS  Google Scholar 

  4. Hui, C.C., Slusarski, D., Platt, K.A., Holmgren, R. & Joyner, A.L. Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm- and 34. mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev. Biol. 162, 402–413 (1994).

    Article  CAS  Google Scholar 

  5. Franz, T. & Besecke, A. The development of the eye in homozygotes of 35. the mouse mutant Extra- toes. Anat Embryol. 184, 355–361 (1991).

    Article  CAS  Google Scholar 

  6. Hodgkinson, C.A. et al. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74, 395–404 (1993).

    Article  CAS  Google Scholar 

  7. Kodama, R. & Eguchi, G. Gene regulation and differentiation in vertebrate ocular tissues. Curr. Opin. Genet. Dev. 4, 703–708 (1994).

    Article  CAS  Google Scholar 

  8. Halder, G., Callaerts, P. & Gehring, W.J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792 (1995).

    Article  CAS  Google Scholar 

  9. Dickson, B. & Hafen, E. Genetic dissection of eye development in 38. Drosophila. in The Development of Drosophila Melanogaster (eds Bate, M. & Martines-Arias, A.) 1327–1362 (Cold Spring Harbor, NY, Cold 39. Spring Harbor Laboratory Press, 1993).

    Google Scholar 

  10. Wolff, T. & Ready, D. Pattern formation in the Drosophila retina,. in The Development of Drosophila Melanogaster (eds Bate, M. & Martines- 40. Arias, A.) 1277–1325 (Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 1993).

    Google Scholar 

  11. Truslove, G.M. A gene causing ocular retardation in the mouse. J. Embryol. Exp. Morphol. 10, 652–660 (1962).

    CAS  PubMed  Google Scholar 

  12. Theiler, K., Varnum, D.S., Nadeau, J.H., & Cagianut, B. A new allele of ocular retardation: early development and morphogenetic cell death. Anat. Embryol. (Berl). 150, 85–97 (1976).

    CAS  PubMed  Google Scholar 

  13. Robb, R.M., Silver, J. & Sullivan, R.T. Ocular retardation (or) in the mouse. Invest. Ophthalmol. Vis. Sci. 17, 468–473 (1978).

    CAS  PubMed  Google Scholar 

  14. Silver, J. & Robb, R.M. Studies on the development of the eye cup and optic nerve in normal mice and in mutants with congenital optic nerve aplasia. Dev. Biol. 68, 175–190 (1979).

    Article  CAS  Google Scholar 

  15. Liu, I.S. et al. Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13, 377–393 (1994).

    Article  CAS  Google Scholar 

  16. Svendsen, P.C. & McGhee, J.D. The C. elegans neuronally expressed homeobox gene ceh-10 is closely related to genes expressed in the vertebrate eye. Development 121, 1253–1262 (1995).

    CAS  PubMed  Google Scholar 

  17. Hawes, N.L. & Roderick, T.H. Linkage of ocular retardation (or). Mouse Genome 87, 93 (1990).

    Google Scholar 

  18. Dietrich, W.F. et al. A genetic map of the mouse with 4006 simple sequence length polymorphisms. Nature Genet. 7S, 220–245 (1994).

    Article  Google Scholar 

  19. Greferath, U., Grunert, U. & Wassle, H. Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J. Comp. Neurol. 301, 433–442 (1990).

    Article  CAS  Google Scholar 

  20. Hankin, M.H. & Lagenaur, C.F. Cell adhesion molecules in the early developing mouse retina: retinal neurons show preferential outgrowth in vitro on L1 but not N-CAM. J. Neurobiol. 25, 472–487 (1994).

    Article  CAS  Google Scholar 

  21. Brittis, P.A., Canning, D.R. & Silver, J. Chondroitin sulfate as a regulator of neuronal patterning in the retina. Science 255, 733–736 (1992).

    Article  CAS  Google Scholar 

  22. Reh, T.A., Tetzlaff, W., Ertlmaier, A. & Zwiers, H. Developmental study of the expression of B50/GAP-43 in rat retina. J. Neurobiol. 24, 949–958 (1993).

    Article  CAS  Google Scholar 

  23. Hoover, F. & Goldman, D. Temporally correlated expression of nAChR genes during development of the mammalian retina. Exp. Eye Res. 54, 561–571 (1992).

    Article  CAS  Google Scholar 

  24. Sidman, R.L. Histogenesis of mouse retina studied with thymidine-H3. in The Structure of the Eye (ed. Smelser, G. K.) 487–506 (New York, Academic Press, 1961).

    Google Scholar 

  25. Young, R.W. Cell differentiation in the retina of the mouse. Anat. Rec. 54, 199–205 (1985).

    Article  Google Scholar 

  26. Inoue, A., Obata, K. & Akagawa, K. Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J. Biol. Chem. 267, 10613–10619 (1992).

    CAS  PubMed  Google Scholar 

  27. Barnstable, C.J., Hofstein, R. & Akagawa, K. A marker of early amacrine cell development in rat retina. Brain Res. 352, 286–290 (1985).

    Article  CAS  Google Scholar 

  28. Dräger, U.C., Edwards, D.L. & Barnstable, C.J. Antibodies against filamentous components in discrete cell types of the mouse retina. J. Neurosci. 4, 2025–2042 (1984).

    Article  Google Scholar 

  29. Barnstable, C.J., Akagawa, K., Hofstein, R. & Horn, J.P. Monoclona antibodies that label discrete cell types in the mammalian nervous system. Cold Spring Harb. Symp. Quant. Biol. 2, 863–876 (1983).

    Article  Google Scholar 

  30. Bascom, R.A. et al. Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies. Neuron 8, 1171–1184 (1992).

    Article  CAS  Google Scholar 

  31. Barnstable, C.J. Monoclonal antibodies which recognize different cell types in the rat retina. Nature 286, 231–235 (1980).

    Article  CAS  Google Scholar 

  32. Konyukhov, B.V. & Sazhina, M.V. intracton of the gence of ocular retardation and microphthalmia in mice. Folia Biol. (Praha) 12, 116–123 (1966).

    CAS  Google Scholar 

  33. Konyukhov, B.V. & Sazhina, M.V. Inhibition of DNA synthesis in embryonic mouse retina as a result of gene interaction. Dev. Biol. 45, 1–6 (1975).

    Article  CAS  Google Scholar 

  34. Dolle, P. et al. Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 75, 431–4441 (1993).

    Article  CAS  Google Scholar 

  35. Condie, B.G. & Capecchi, M.R. Mice homozygous for a targeted disruption of Hoxd-3 (Hox-4. 1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and the axis. Development 119, 579–595 (1993).

    CAS  Google Scholar 

  36. Condie, B.G. & Capecchi, M.R. Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions [published erratum appears in Nature 371, 537 (1994)]. Nature 370, 304–307 (1994).

    Article  CAS  Google Scholar 

  37. Duboule, D. Hox genes and proliferation: an alternative pathway to homeosis? Curr. Opin. Genet. Dev. 5, 525–528 (1995).

    Article  CAS  Google Scholar 

  38. Rabbitts, T.H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

    Article  CAS  Google Scholar 

  39. Hentsch, B. et al. Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev. 10, 70–79 (1996).

    Article  CAS  Google Scholar 

  40. Graham, A., Francis, W.P., Brickell, P. & Lumsden, A. The signaling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372, 684–686 (1994).

    Article  CAS  Google Scholar 

  41. Turner, D.L. & Cepko, C.L. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328, 131–136 (1987).

    Article  CAS  Google Scholar 

  42. Wetts, R. & Fraser, S.E. Multipotent precursors can give rise to all major cell types of the frog retina. Science 239, 1142–1145 (1988).

    Article  CAS  Google Scholar 

  43. Holt, C.E., Bertsch, T.W., Ellis, H.M. & Harris, W.A. Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1, 15–26 (1988).

    Article  CAS  Google Scholar 

  44. Stoykova, A. & Gruss, P. Roles of Pax-Genes in Developing and AdulBrain as Suggested by Expression Patterns. J. Neuroscience 14, 1395–1412 (1994).

    Article  CAS  Google Scholar 

  45. Strachan, T. & Read, A.P. PAX genes. Curr. Opin. Genet. Dev. 4, 427–438 (1994).

    Article  CAS  Google Scholar 

  46. Taylor, B.A. & Rowe, L. A mouse linkage testing stock possessing multiple copies of the endogenous ecotropic murine leukemia virus genome. Genomics 5, 221–232 (1989).

    Article  CAS  Google Scholar 

  47. Taylor, B.A.,& DiLauro, R. Linkage of the thyroid peroxidase locus (Tpo) to markers in the proximal part of chromosome 12 of the mouse. Cytogenet. Cell Genet. 60, 250–251 (1992).

    Article  CAS  Google Scholar 

  48. Taylor, B.A., Bailey, D.W., Cherry, M., Riblet, R. & Weigert, M. Genes for immunoglobulin heavy chain and serum prealbumin protein are linked in mouse. Nature 256, 644–646 (1975).

    Article  CAS  Google Scholar 

  49. Ikeda, H., Martin, M.A. & Repaske, R. Characterization of a molecularly cloned retroviral sequence associated with Fv-4 resistance. J. Virol. 55, 768–777 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Taylor, R.G., Grieco, D., Clarke, G.A., Mclnnes, R.R. & Taylor, B.A. Identification of the mutation in murine histidinemia (his) and genetic mapping of the murine histidase locus (Hal) on chromosome 10. Genomics 16, 231–240 (1993).

    Article  CAS  Google Scholar 

  51. Hawes, N.L., Langley, S.H. & Roderick, T.H. Location of syndactylism (sm) on chr. 12. Mouse News Lett. 63, 20 (1980).

    Google Scholar 

  52. Kosambi, D.D. The estimation of map distances from recombination values. Ann. Eugen. 12, 172–175 (1944).

    Article  Google Scholar 

  53. Soriano, E., Del, R.J., Martinez, G., Martinez, G. R. Ferrer, I. & Lopez, C. Immunocytochemical detection of 5'-bromodeoxyuridine in fluorogold- labelled neurons: a simple technique to combine retrograde axonal tracing and neurogenetic characterization of neurons. J. Histochem. Cytochem. 39, 1565–1570 (1991).

    Article  CAS  Google Scholar 

  54. Humason, G.L. Animal Tissue Techniques. (San Francisco W.H. Freeman & Co., 1979).

    Google Scholar 

  55. Shaw, G. & Weber, K. The intermediate filament complement of the retina: a comparison between different mammalian species. Eur. J. Cell. Biol. 33, 95–104 (1984).

    CAS  PubMed  Google Scholar 

  56. Erickson, P.A., Fisher, S.K., Guerin, C.J., Anderson, D.H. & Kaska, D.D. Glial fibrillary acidic protein increases in Muller cells after retinal detachment. Exp. Eye Res. 44, 37–48 (1987).

    Article  CAS  Google Scholar 

  57. Linser, P. & Moscona, A.A. Carbonic anhydrase C in the neural retina: transition from generalized to glia-specific cell localization duringembryonic development. Proc. Natl. Acad. Sci. USA 78, 7190–7194 (1981).

    Article  CAS  Google Scholar 

  58. Adams, J.C. Heavy metal intensification of DAB-based HRP reaction product. J. Histochem. Cytochem. 29, 775 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burmeister, M., Novak, J., Liang, MY. et al. Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat Genet 12, 376–384 (1996). https://doi.org/10.1038/ng0496-376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0496-376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing