Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Missense mutation in the gene encoding the α subunit of rod transducin in the Nougaret form of congenital stationary night blindness

Abstract

Patients with congenital stationary night blindness enjoy normal daytime vision, which is mediated by cone photoreceptors, but are blind when ambient light is so dim that a normal individual would utilize only rod photoreceptors to see without colour discrimination. The disease is genetically heterogeneous. One form of dominantly inherited congenital night blindness is eponymously named ‘Nougaret’ because pedigree analysis reveals that the disease originated in Jean Nougaret (1637–1719), a butcher who lived in Vendémian in southern France16. Here we report that his affected descendants carry a missense mutation in the gene encoding the a subunit of rod transducin — the G-protein that couples rhodopsin to cGMP-phosphodiesterase in the phototransduction cascade. Based on these results, rod transducin joins rhodopsin7,8 and the β subunit of rod cGMP-phosphodiesterase9 to become the third component of the rod phototransduction cascade where a defect is implicated as a cause of stationary night blindness. Interestingly, the amino acid residue in transducin affected by the Nougaret mutation is in the position homologous to that affected by the oncogenic mutation originally reported in p21ras, a distant relative in the G-protein superfamily.,

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cunier, F. Héméralopie héréditaire depuis deux siécles dans une f ami lie de la commune de Vendémian, à cinq lieues de Montpellier. Annal. d'Ocul. 1, 32–34 (1838).

    Google Scholar 

  2. Cunier, F. Histoire d'une héméralopie héréditare depuis deux siècles dans une famille de la commune de Vendémian, près Montpellier. Ann. Soc. Méd. Gand. 4, 383–395 (1838).

    Google Scholar 

  3. Nettleship, E. A history of congenital stationary night-blindness in nine consecutive generations. Trans. Ophthalmol. Soc. UK. 27, 269–293 (1907).

    Google Scholar 

  4. True, H. Généalogie d'une famille héméralope depuis prés de trois siècles, 270 ans, 10 générations, 2121 membres, 135 héméralopes. Bull. Soc. Ophtalmol. Fr. 26, 285–292 (1909).

    Google Scholar 

  5. Dejean, C. & Gassenc, R. Note sur la genealogie de la famille Nougaret, de Vendémian. Bull. Soc. Ophtalmol. Fr. 1, 96–99 (1949).

    Google Scholar 

  6. François, J., Verriest, G., de Rouck, A., & Dejean, C. Les fonctions visuelles dans I'hemeralopie essentielle nougarienne. Ophthalmologica. 132, 244–257 (1956).

    Article  Google Scholar 

  7. Dryja, T.P., Berson, E.L., Rao, V.R. & Oprian, D.D. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nature Genet. 4, 280–283 (1993).

    Article  CAS  Google Scholar 

  8. Sieving, P.A., Richards, J.E., Naarendorp, F., Bingham, E.L., Scott, K. & Alpern, M., Model for nightblindness from the human rhodopsin Gly-90→Asp mutation. Proc. Nail. Acad. Sci. USA 92, 880–884 (1995).

    Article  CAS  Google Scholar 

  9. Gal, A., Orth, U., Baehr, W., Schwinger, E. & Rosenberg, T. Heterozygous missense mutation in the rod cGMP phosphodiesterase β-subunit gene in autosomal dominant stationary night blindness. Nature Genet. 7, 64–68 (1994).

    Article  CAS  Google Scholar 

  10. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  11. Dryja, T.P., Hahn, L.B., Cowley, G.S., McGee, T.L. & Berson, E.L. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 88, 9370–9374 (1991).

    Article  CAS  Google Scholar 

  12. Khani, S.C. et al. Characterization and chromosomal localization of the gene for human rhodopsin kinase. Genomics (in the press).

  13. Fong, S.L. Characterization of the human rod transducin alpha-subunit gene. Nucl. Acids Res. 20, 2865–2870 (1992).

    Article  CAS  Google Scholar 

  14. Yamaki, K., Tsuda, M., Kikuchi, T., Chen, K.H., Huang, K.P. & Shinohara, T. Structural organization of the human S-antigen gene. J. Biol. Chem. 265, 20757–20762 (1990).

    CAS  PubMed  Google Scholar 

  15. Huang, S.H., Pittler, S.J., Huang, X., Oliveira, L., Berson, E.L. & Dryja, T.P. Autosomal recessive retinitis pigmentosa caused by mutations in the a subunit of rod cGMP phosphodiesterase. Nature Genet. 11, 468–471 (1995).

    Article  CAS  Google Scholar 

  16. McLaughlin, M.E., Ehrhart, T.L., Berson, E.L. & Dryja, T.R. Mutation spectrum of the gene encoding the 13 subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa. Proc. Natl. Acad. Sci. USA. 92, 3249–3253 (1995).

    Article  CAS  Google Scholar 

  17. Hahn, L.B., Berson, E.L. & Dryja, T.R. Evaluation of the gene encoding the gamma subunit of rod phosphodiesterase in retinitis pigmentosa. Invest. Ophthal. Vis. Sci. 35, 1077–1082 (1994).

    CAS  PubMed  Google Scholar 

  18. Murakami, A., Yajima, T. & Inana, G. Isolation of human retinal genes: recoverin cDNA and gene. Biochem. Biophys. Res. Comm. 187, 234–244 (1992).

    Article  CAS  Google Scholar 

  19. Subbaraya, I. et al. Molecular characterization of human and mouse photoreceptor guanylate cyclase activating protein (GCAP) and chromosomal localization of the human gene. J. Biol. Chem. 269, 31080–31089 (1994).

    CAS  PubMed  Google Scholar 

  20. Dryja, T.P., Finn, J.T., Peng, Y.-W., McGee, T.L., Berson, E.L. & Yau, K.-W. Mutations in the gene encoding the a subunit of rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. Proc. Natl. Acad. Sci. USA. 92, 10177–10181 (1995).

    Article  CAS  Google Scholar 

  21. Bascom, R.A., Schappert, K. & Mclnnes, R.R. Cloning of the human and murine ROM1 genes: genomic organization and sequence conservation. Hum. Mol. Genet. 2, 385–391 (1993).

    Article  CAS  Google Scholar 

  22. Schubert, G. & Bornschein, H. Beitrag zur Analyse des menschlichen Elektroretinogramms. Ophthalmologica. 123, 396–413 (1952).

    Article  CAS  Google Scholar 

  23. Armington, J.C. & Schwab, G.J. Electroretinogram in nyctalopia. Arch. Ophthalmol. 52, 725–733 (1954).

    Article  CAS  Google Scholar 

  24. Goodman, G. & Bornschein, H. Comparative electroretinographic studies in congenital night blindness and total color blindness. Arch. Ophthalmol. 58, 174–182 (1957).

    Article  CAS  Google Scholar 

  25. Carr, R.E., Ripps, H., Siegel, I.M. & Weale, R.A. Rhodopsin and the electrical activity of the retina in congenital night blindness. Invest. Ophthal. Vis. Sci. 5, 497–507 (1966).

    CAS  Google Scholar 

  26. Graziano, M.R. & Gilman, A.G. Synthesis in Escherichia coli of GTPase-deficient mutants of Gsa. J. Biol. Chem. 264, 15475–15482 (1989).

    CAS  PubMed  Google Scholar 

  27. Tabin, C.J. et al. Mechanism of activation of a human oncogene. Nature 300, 143–149 (1982).

    Article  CAS  Google Scholar 

  28. Reddy, E.P., Reynolds, R.K., Santos, E. & Barbacid, M. A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300, 149–152 (1982).

    Article  CAS  Google Scholar 

  29. Santos, E., Reddy, E.P., Pulciani, S., Feldmann, R.J. & Barbacid, M. Spontaneous activation of a human proto-oncogene. Proc. Natl. Acad. Sci. USA. 80, 4679–4683 (1983).

    Article  CAS  Google Scholar 

  30. seeburg, P.H., Colby, W.W., Capon, D.J., Goeddel, D.V.,& Levinson, A.D. Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature 312, 71–75 (1984).

    Article  CAS  Google Scholar 

  31. Chipperfield, R.G., Jones, S.S., Lo, K.-M. & Weinberg, R.A. Activation of Ha-ras p21 by substitution, deletion, and insertion mutations. Mol. Cell. Biol. 5, 1809–1813 (1985).

    Article  CAS  Google Scholar 

  32. Lambright, D.G., Noel, J.P., Hamm, H.E. & Sigler, P.B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994).

    Article  CAS  Google Scholar 

  33. Tong, L. et al. Structural differences between a ras oncogene protein and the normal protein. Nature 337, 90–93 (1989).

    Article  CAS  Google Scholar 

  34. Temeles, G.L., Gibbs, J.B., D'Alonzo, J.S., Sigal, I.S. & Scolnick, E.M. Yeast and mammalian ras proteins have conserved biochemical properties. Nature 313, 700–703 (1985).

    Article  CAS  Google Scholar 

  35. Masters, S.B. et al. Mutations in the GTP-binding site of Gsα alter stimulation of adenylyl cyclase. J. Biol. Chem. 264, 15467–15474 (1989).

    CAS  PubMed  Google Scholar 

  36. Lee, E., Taussig, R. & Gilman, A.G. The G226A mutant of Gsα highlights the requirement for dissociation of G protein subunits. J. Biol. Chem. 267, 1212–1218 (1992).

    CAS  PubMed  Google Scholar 

  37. Raport, C.J. et al. Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors. Invest. Ophthal. Vis. Sci. 35, 2932–2947 (1994).

    CAS  PubMed  Google Scholar 

  38. Lee, Y.-J., Shah, S., Suzuki, E., Zars, T., O'Day, P.M. & Hyde, D.R., Drosophila dgq gene encodes a Ga protein that mediates phototransduction. Neuron. 13, 1143–1157 (1994).

    Article  CAS  Google Scholar 

  39. Ruiz-Avila, L. et al. Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells. Nature 376, 80–85 (1995).

    Article  CAS  Google Scholar 

  40. Kolesnikov, S.S. & Margolskee, R.F. A cyclic-nucleotide-suppressible conductance activated by transducin in taste cells. Nature 376, 85–88 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaddeus P. Dryja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dryja, T., Hahn, L., Reboul, T. et al. Missense mutation in the gene encoding the α subunit of rod transducin in the Nougaret form of congenital stationary night blindness. Nat Genet 13, 358–360 (1996). https://doi.org/10.1038/ng0796-358

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0796-358

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing