Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A candidate gene for familial Mediterranean fever

Abstract

Familial Mediterranean fever (FMF) is an autosomal recessive disorder characterized by attacks of fever and serositis. In this paper, we define a minimal co-segregating region of 60 kb containing the FMF gene (MEFV) and identify four different transcript units within this region. One of these transcripts encodes a new protein (marenostrin) related to the ret-finger protein and to butyrophilin. Four conservative missense variations co-segregating with FMF have been found within the MEFV candidate gene in 85% of the carrier chromosomes. These variations, which cluster at the carboxy terminal domain of the protein, were not present in 308 control chromosomes, including 162 validated non-carriers. We therefore propose that the sequence alterations in the marenostrin protein are responsible for the FMF disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Daniels, M., Shohat, T., Brenner-Ulman, A. & Shohat, M., Familial Mediterranean fever: high gene frequency among the non-Ashkenazic and Ashkenazic Jewish populations in Israel. Am. J. Med. Genet. 55, 311–314 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Rogers, D. et al. Familial Mediterranean fever in Armenians: autosomal recessive inheritance with high gene frequency. Am. J. Med. Genet. 34, 168–172 (1995).

    Article  Google Scholar 

  3. Aksentijevich, I. et al. Refined mapping of the gene causing familial Mediterranean fever, by linkage and homozygosity studies. Am. J. Hum. Genet. 53, 451–461 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Levy, E. et al. Linkage disequilibrium mapping places the gene causing familial Mediterranean fever close to D16S246. Am. J. Hum. Genet. 58, 523–534 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. The French FMF Consortium. Localization of the familial Mediterranean fever gene (FMF) to a 250-kb interval in non-Ashkenazi Jewish founder haplotypes. Am. J. Hum. Genet. 59, 603–612 (1996).

  6. Sood, R. et al. Construction of a 1-Mb restriction-mapped cosmid contig containing the candidate region for the familial Mediterranean fever locus (MEFV) on chromosome 16p13.3. Genomics 42, 83–95 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Datson, N. et al. Scanning for genes in large genomic regions: cosmid-based exon trapping of multiple exons in a single product. Nucleic Acids Res. 24, 1105–1111 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Altschul, S. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Adams, M.D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377, 3S–174S (1995).

    Google Scholar 

  10. Hiller, L., et al. Generation and analysis of 280,000 human sequence tags. Genome Res. 6, 807–828 (1996).

    Article  Google Scholar 

  11. Xu, Y., Mural, R., Shah, M. & Uberbacher, E. Recognizing exons in genomic sequence using GRAIL II. in Genetic Engineering: Principles and Methods. Vol 16 (ed. Setlow, J.) 241–253 (Plenum, New York, 1994).

    Google Scholar 

  12. Solovyev, V., Salamov, A. & Lawrence, C. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. Nucleic Acids Res. 22, 5156–5163 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kulp, D., Haussler, D., Reese, M. & Eeckman, F. A generalized hidden Markov model for the recognition of human genes in DNA. in ISBM-96 (ed. AAAI) 134–142 (MIT Press, St. Louis, Missouri, 1996).

    Google Scholar 

  14. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Klug, A. & Rhodes, D. Zinc-fingers: a novel protein motif for nucleic acid recognition. Trends Biochem. Sci. 12, 464–467 (1987).

    Article  CAS  Google Scholar 

  16. Takahashi, M. & Cooper, G. Ret transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol. Cell. Biol. 7, 1378–1385 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jack, J. & Mather, I. Cloning and analysis of cDNA encoding bovine butyrophilin, an apical glycoprotein expressed in mammary tissue and secreted in association with the milk-fat globule membrane during lactation. J. Biol. Chem. 265, 14481–14486 (1990).

    CAS  PubMed  Google Scholar 

  18. Bellini, M., Lacroix, J. & Gall, J. A putative zinc-binding protein on lampbrush chromosomes loops. EMBO J. 12, 107–114 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patarca, R. et al. rpt-1, an intracellular protein from helper/inducer T cells that regulates gene expression of interleukin 2 receptor and human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 85, 2733–2737 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsugu, H., Horowitz, R., Gibson, N. & Frank, M. The location of a disease-associated polymorphism and genomic structure of the human 52-kDa Ro/SSA locus (SSA1). Genomics 24, 541–548 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Gouzy, J., Corpet, F. & Kahn, D. Graphical interface for ProDom domain families. Trends Biochem. 21, 493 (1996).

    Article  CAS  Google Scholar 

  22. Newton, C. et al. Analysis of any point mutation in DNA: the amplification refractory mutation system (ARMS). Nucleic Acids Res. 17, 2503–2516 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dausset, J. et al. Program description: Centre d'Étude du Polymorphisme Humain (CEPH). Collaborative genetic mapping of the human genome. Genomics, 6, 575–578 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Almeida, M. et al. Haplotype analysis of common transthyretin mutations. Hum. Genet. 96, 350–354 (1995).

    CAS  PubMed  Google Scholar 

  25. Mott, R., Grigoriev, A., Maier, E., Hoheisel, J. & Lehrach, H. Algorithms and software tools for ordering clones libraries: application to the mapping of the genome of Schizosaccharomyces pombe. Nucleic Acids Res. 21, 1965–1974 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goguel, A., Pulcini, F., Danglot, G. & Fauvet, D. Mapping of 22 YACs on human chromosomes by FISH using yeast DNA Alu PCR products for competition. Ann. Genet. 39, 64–68 (1996).

    CAS  PubMed  Google Scholar 

  27. Roach, J., Boysen, C. & Hood, L. Pairwise end sequencing: a unified approach to genomic mapping and sequencing. Genomics 26, 345–353 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Rosenberg, C. et al. High resolution DNA Fiber-FISH on yeast artificial chromosomes direct visualization of DNA replication. Nature Genet. 10, 477–479 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Wiegant, J. et al. High-resolution in situ hybridization using DNA halo preparations. Hum. Mol. Genet. 1, 587–591 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Bonfield, J.K., Smith, K.F. & Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 23, 4992–4999 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rychlik, W. & Rhoads, R. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 17, 8543–8551 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

The French FMF Consortium, Bernot, A., Clepet, C. et al. A candidate gene for familial Mediterranean fever. Nat Genet 17, 25–31 (1997). https://doi.org/10.1038/ng0997-25

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0997-25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing