Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mice lacking ornithine–δ–amino–transferase have paradoxical neonatal hypoornithinaemia and retinal degeneration

Abstract

Deficiency of ornithine–δ–aminotransferase (OAT) in humans causes hyperornithinaemia and gyrate atrophy (GA), a blinding chorioretinal degeneration. Surprisingly, OAT–deficient mice produced by gene targeting exhibit neonatal hypoornithinaemia and lethality, rescuable by short–term arginine supplementation. Post–weaning, these mice develop hyperornithinaemia similar to human GA patients. Subsequent studies in one human GA infant also showed transient hypoornithinaemia. Thus, the OAT reaction plays opposite roles in neonatal and adult mammals. Over several months, OAT–deficient mice develop a retinal degeneration with involvement of photoreceptors and pigment epithelium. OAT–deficient mice appear to be an excellent model of human GA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Valle, D. & Simell, O. The hyperornithinaemias. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C., Beaudet, A., Sly, W. & Valle, D.) 1147–1185 (McGraw Hill, New York, 1995).

    Google Scholar 

  2. Mitchell, G. et al. Human ornithine-δ-aminotransferase: cDNA cloning and analysis of the structural gene. J. biol. Chem. 263, 14288–14295 (1988).

    CAS  PubMed  Google Scholar 

  3. Mitchell, G. et al. An initiator codon mutation in ornithine-δ-aminotransferase causing gyrate atrophy. J. clin. Invest. 81, 630–633 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Michaud, J. et al. Strand-separating conformational polymorphism (SSCP) analysis: efficacy of detection of point mutations in the human ornithine-S-aminotransferase gene. Genomics 13, 389–394 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Brody, L.C. et al. Ornithine-δ-aminotransferase mutations causing gyrate atrophy: alelic heterogeneity and functional consequences. J. biol. Chem. 267, 3302–3307 (1992).

    CAS  PubMed  Google Scholar 

  6. Wilson, D.J., Weleber, R.G. & Green, W.R. Ocular clinicopathologic study of gyrate atrophy. Am. J. Ophthalmol. 111, 24–33 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. McMahon, A. & Bradley, A., The Wnt-1 proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Mansour, S., Thomas, K. & Capecchi, M. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Ramirez-Solis, R. et al. Genomic DNA microextraction: a method to screen numerous samples. Anal. Biochem. 201, 331–335 (1993).

    Article  Google Scholar 

  10. Lamb, B. et al. Induction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nature Genet. 5, 22–30 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Hurwitz, R. & Kretchmer, N. Development of arginine-synthesizing enzymes in mouse intestine. Am. J. Physiol. 251, G103–G110 (1986).

    CAS  PubMed  Google Scholar 

  12. Jones, M. Conversion of glutamate to ornithine and proline. Pyrroline-5-carboxylate, a possible modulator of arginine requirements. J. Nutr. 115, 509–515 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Riby, J., Hurwitz, R. & Kretchmer, N. Development of ornithine metabolism in the mouse intestine. Pediatr. Res. 28, 261–265 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Morris, J. & Rogers, Q. Ammonia intoxication in the near-adult cat as a result of a dietary deficiency of arginine. Science 199, 431–432 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. Morris, J. & Rogers, Q. Arginine: an essential amino acid for the cat. J. Nutr. 108, 1944–1953 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Stewart, P., Walser, M., Batshaw, M. & Valle, D. Effects of arginine-free meals on ureagenesis in cats. Am. J. Physiol. 241, 310–315 (1981).

    Google Scholar 

  17. Windmueller, H. & Spaeth, A. Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Arch. Biochem. Biophys. 171, 662 (1975).

    Article  CAS  PubMed  Google Scholar 

  18. Wakabayashi, Y., Yamada, E., Hasegawa, T. & Yamada, R. Enzymological evidence for the indispensability of small intestine in the synthesis of arginine from glutamate. I. Pyrroline-5-carboxylate synthase. Arch. Biochem. Biophys. 291, 1–8 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Kerwin, J.J. & Heller, M. The arginine-nitric oxide pathway: a target for new drugs. Medic. Res. Rev. 14, 23–74 (1994).

    Article  CAS  Google Scholar 

  20. Hauser, E., Finkelstein, J., Valle, D. & Brusilow, S. Allopurinol-induced orotidinuria: A test for mutations at the ornithine transcarbamylase locus in women. New Engl. J. Med. 322, 1641–1645 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Mitchell, G. et al. At least two mutant alleles of ornithine-δ-aminotransferase cause gyrate atrophy of the choroid and retina in Finns. Proc. natn. Acad. Sci. U.S.A. 86, 197–201 (1989).

    Article  CAS  Google Scholar 

  22. Altman, P.L. & Dittmer, D.S. in Biology Data Book, 2nd ed., 195–210 (Federation of American Society of Experimental Biology, Bethesda, 1972).

    Google Scholar 

  23. Davis, T.A., Fiorotto, M.L. & Reeds, P.J. Amino acid composition of body and milk proteins change during the suckling period in rats. J. Nutr. 123, 947–956 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Carey, G.P. et al. An arginine-deficient diet in humans does not evoke hyperorotic acidaemia. J. Nutr. 117, 1734–1739 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Patejunas, G., Bradley, A., Beaudet, A. & O'Brien, W. Generation of a mouse model for citrullinaemia by targeted disruption of the argininosuccinate synthetase gene. Somat. Cell. molec. Genet. 20, 55–60 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe, M. et al. Mice deficient in cystathionine β-synthase: Animal models for mild and severe homocyst(e)inemia. Proc. natn. Acad. Sci. U.S.A. 92, 1585–1589 (1995).

    Article  CAS  Google Scholar 

  27. Wakamiya, M. et al. Disruption of the adenosine deaminase gene causes hepatocellular impairment and perinatal lethality in mice. Proc. natn. Acad. Sci. U.S.A. 92, 3673–3677 (1995).

    Article  CAS  Google Scholar 

  28. Migchielsen, A.A.J. et al. Adenosene deaminase-deficient mice die perinatally and exhibit liver-cell degeneration, atelectasis and small intestinal cell death. Nature Genet. 10, 279–287 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Brusilow, S.W. in Techniques in Human Biochemical Genetics (ed. Hommes, F.) 345–357 (Wiley-Liss, New York, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Lawler, A., Steel, G. et al. Mice lacking ornithine–δ–amino–transferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat Genet 11, 185–190 (1995). https://doi.org/10.1038/ng1095-185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1095-185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing