Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein tyrosine phosphatases in lymphocyte activation and autoimmunity

Abstract

Lymphocyte activation must be tightly regulated to ensure sufficient immunity to pathogens and prevent autoimmunity. Protein tyrosine phosphatases (PTPs) serve critical roles in this regulation by controlling the functions of key receptors and intracellular signaling molecules in lymphocytes. In some cases, PTPs inhibit lymphocyte activation, whereas in others they promote it. Here we discuss recent progress in elucidating the roles and mechanisms of action of PTPs in lymphocyte activation. We also review the accumulating evidence that genetic alterations in PTPs are involved in human autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main activating receptors involved in lymphocyte activation.
Figure 2: Regulation of Src family kinases by CD45 and CD148 in lymphocytes.
Figure 3: Regulation of Src family kinases by PTPN22.
Figure 4: Control of NK cell activation by SHP-1.

Similar content being viewed by others

References

  1. Murphy, K., Travers, P., Walport, M. & Janeway, C. Immunobiology, 7th Edition (Garland Science, New York, 2008).

    Google Scholar 

  2. Samelson, L.E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    CAS  PubMed  Google Scholar 

  3. Lanier, L.L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Raulet, D.H. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 3, 781–790 (2003).

    CAS  PubMed  Google Scholar 

  5. Cambier, J.C. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J. Immunol. 155, 3281–3285 (1995).

    CAS  PubMed  Google Scholar 

  6. Veillette, A. SLAM-family receptors: immune regulators with or without SAP-family adaptors. Cold Spring Harb. Perspect. Biol. 2, a002469 (2010).

    PubMed  PubMed Central  Google Scholar 

  7. Weiss, A. T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73, 209–212 (1993).

    CAS  PubMed  Google Scholar 

  8. Jordan, M.S., Singer, A.L. & Koretzky, G.A. Adaptors as central mediators of signal transduction in immune cells. Nat. Immunol. 4, 110–116 (2003).

    CAS  PubMed  Google Scholar 

  9. Horejsí, V., Zhang, W. & Schraven, B. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat. Rev. Immunol. 4, 603–616 (2004).

    PubMed  Google Scholar 

  10. Schindler, C., Levy, D.E. & Decker, T. JAK-STAT signaling: from interferons to cytokines. J. Biol. Chem. 282, 20059–20063 (2007).

    CAS  PubMed  Google Scholar 

  11. Mustelin, T., Vang, T. & Bottini, N. Protein tyrosine phosphatases and the immune response. Nat. Rev. Immunol. 5, 43–57 (2005).

    CAS  PubMed  Google Scholar 

  12. Pao, L.I., Badour, K., Siminovitch, K.A. & Neel, B.G. Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annu. Rev. Immunol. 25, 473–523 (2007).

    CAS  PubMed  Google Scholar 

  13. Vang, T. et al. Protein tyrosine phosphatases in autoimmunity. Annu. Rev. Immunol. 26, 29–55 (2008).

    CAS  PubMed  Google Scholar 

  14. Hermiston, M.L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).

    CAS  PubMed  Google Scholar 

  15. Zikherman, J. & Weiss, A. Alternative splicing of CD45: the tip of the iceberg. Immunity 29, 839–841 (2008).

    CAS  PubMed  Google Scholar 

  16. Desai, D.M., Sap, J., Silvennoinen, O., Schlessinger, J. & Weiss, A. The catalytic activity of the CD45 membrane-proximal phosphatase domain is required for TCR signaling and regulation. EMBO J. 13, 4002–4010 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, Y. & Johnson, P. Expression of CD45 lacking the catalytic protein tyrosine phosphatase domain modulates Lck phosphorylation and T cell activation. J. Biol. Chem. 280, 14318–14324 (2005).

    CAS  PubMed  Google Scholar 

  18. Majeti, R. et al. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103, 1059–1070 (2000).

    CAS  PubMed  Google Scholar 

  19. Nam, H.J., Poy, F., Saito, H. & Frederick, C.A. Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J. Exp. Med. 201, 441–452 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Koretzky, G.A., Picus, J., Thomas, M.L. & Weiss, A. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature 346, 66–68 (1990). The authors show that CD45 is essential for TCR-mediated signaling and T cell activation.

    CAS  PubMed  Google Scholar 

  21. Kishihara, K. et al. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74, 143–156 (1993). This manuscript shows that CD45 is necessary for T cell development but not for B cell development.

    CAS  PubMed  Google Scholar 

  22. Byth, K.F. et al. CD45-null transgenic mice reveal a positive regulatory role for CD45 in early thymocyte development, in the selection of CD4+CD8+ thymocytes, and B cell maturation. J. Exp. Med. 183, 1707–1718 (1996).

    CAS  PubMed  Google Scholar 

  23. Cahir McFarland, E.D. et al. Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signaling through the T-cell receptor. Proc. Natl. Acad. Sci. USA 90, 1402–1406 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ostergaard, H.L. et al. Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc. Natl. Acad. Sci. USA 86, 8959–8963 (1989). This report, and ref. 25, shows that CD45 specifically dephosphorylates the inhibitory tyrosine of Src family kinases.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mustelin, T., Coggeshall, K.M. & Altman, A. Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc. Natl. Acad. Sci. USA 86, 6302–6306 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sieh, M., Bolen, J.B. & Weiss, A. CD45 specifically modulates binding of Lck to a phosphopeptide encompassing the negative regulatory tyrosine of Lck. EMBO J. 12, 315–321 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Seavitt, J.R. et al. Expression of the p56(Lck) Y505F mutation in CD45-deficient mice rescues thymocyte development. Mol. Cell. Biol. 19, 4200–4208 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zikherman, J. et al. CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. Immunity 32, 342–354 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Baker, M. et al. Development of T-leukaemias in CD45 tyrosine phosphatase-deficient mutant lck mice. EMBO J. 19, 4644–4654 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. D'Oro, U. & Ashwell, J.D. Cutting edge: the CD45 tyrosine phosphatase is an inhibitor of Lck activity in thymocytes. J. Immunol. 162, 1879–1883 (1999).

    CAS  PubMed  Google Scholar 

  31. Benatar, T. et al. Immunoglobulin-mediated signal transduction in B cells from CD45-deficient mice. J. Exp. Med. 183, 329–334 (1996).

    CAS  PubMed  Google Scholar 

  32. Weaver, C.T., Pingel, J.T., Nelson, J.O. & Thomas, M.L. CD8+ T-cell clones deficient in the expression of the CD45 protein tyrosine phosphatase have impaired responses to T-cell receptor stimuli. Mol. Cell. Biol. 11, 4415–4422 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Justement, L.B., Campbell, K.S., Chien, N.C. & Cambier, J.C. Regulation of B cell antigen receptor signal transduction and phosphorylation by CD45. Science 252, 1839–1842 (1991).

    CAS  PubMed  Google Scholar 

  34. Zhu, J.W., Brdicka, T., Katsumoto, T.R., Lin, J. & Weiss, A. Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling. Immunity 28, 183–196 (2008). This publication shows that CD45 and CD148 cooperate to promote BCR signaling, B cell activation and B cell development.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Katagiri, T., Ogimoto, M., Hasegawa, K., Mizuno, K. & Yakura, H. Selective regulation of Lyn tyrosine kinase by CD45 in immature B cells. J. Biol. Chem. 270, 27987–27990 (1995).

    CAS  PubMed  Google Scholar 

  36. Katagiri, T. et al. CD45 negatively regulates lyn activity by dephosphorylating both positive and negative regulatory tyrosine residues in immature B cells. J. Immunol. 163, 1321–1326 (1999).

    CAS  PubMed  Google Scholar 

  37. Zikherman, J., Doan, K., Parameswaran, R., Raschke, W. & Weiss, A. Quantitative differences in CD45 expression unmask functions for CD45 in B-cell development, tolerance, and survival. Proc. Natl. Acad. Sci. USA 109, E3–E12 (2012).

    CAS  PubMed  Google Scholar 

  38. Hesslein, D.G., Takaki, R., Hermiston, M.L., Weiss, A. & Lanier, L.L. Dysregulation of signaling pathways in CD45-deficient NK cells leads to differentially regulated cytotoxicity and cytokine production. Proc. Natl. Acad. Sci. USA 103, 7012–7017 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Huntington, N.D., Xu, Y., Nutt, S.L. & Tarlinton, D.M. A requirement for CD45 distinguishes Ly49D-mediated cytokine and chemokine production from killing in primary natural killer cells. J. Exp. Med. 201, 1421–1433 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mason, L.H., Willette-Brown, J., Taylor, L.S. & McVicar, D.W. Regulation of Ly49D/DAP12 signal transduction by Src-family kinases and CD45. J. Immunol. 176, 6615–6623 (2006).

    CAS  PubMed  Google Scholar 

  41. Johnson, K.G., Bromley, S.K., Dustin, M.L. & Thomas, M.L. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc. Natl. Acad. Sci. USA 97, 10138–10143 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Irles, C. et al. CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nat. Immunol. 4, 189–197 (2003).

    CAS  PubMed  Google Scholar 

  43. Davis, S.J. & van der Merwe, P.A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–809 (2006).

    CAS  PubMed  Google Scholar 

  44. Batista, F.D., Iber, D. & Neuberger, M.S. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001).

    CAS  PubMed  Google Scholar 

  45. Xu, Z. & Weiss, A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat. Immunol. 3, 764–771 (2002).

    CAS  PubMed  Google Scholar 

  46. Jacobsen, M. et al. A point mutation in PTPRC is associated with the development of multiple sclerosis. Nat. Genet. 26, 495–499 (2000).

    CAS  PubMed  Google Scholar 

  47. Barcellos, L.F. et al. PTPRC (CD45) is not associated with the development of multiple sclerosis in U.S. patients. Nat. Genet. 29, 23–24 (2001).

    CAS  PubMed  Google Scholar 

  48. Hermiston, M.L., Zikherman, J. & Zhu, J.W. CD45, CD148, and Lyp/Pep: critical phosphatases regulating Src family kinase signaling networks in immune cells. Immunol. Rev. 228, 288–311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stepanek, O. et al. Regulation of Src family kinases involved in T cell receptor signaling by protein-tyrosine phosphatase CD148. J. Biol. Chem. 286, 22101–22112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tangye, S.G. et al. Negative regulation of human T cell activation by the receptor-type protein tyrosine phosphatase CD148. J. Immunol. 161, 3803–3807 (1998).

    CAS  PubMed  Google Scholar 

  51. Lin, J. & Weiss, A. The tyrosine phosphatase CD148 is excluded from the immunologic synapse and down-regulates prolonged T cell signaling. J. Cell Biol. 162, 673–682 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Burn, G.L., Svensson, L., Sanchez-Blanco, C., Saini, M. & Cope, A.P. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett. 585, 3689–3698 (2011).

    CAS  PubMed  Google Scholar 

  53. Vang, T., Miletic, A.V., Bottini, N. & Mustelin, T. Protein tyrosine phosphatase PTPN22 in human autoimmunity. Autoimmunity 40, 453–461 (2007).

    CAS  PubMed  Google Scholar 

  54. Veillette, A., Rhee, I., Souza, C.M. & Davidson, D. PEST family phosphatases in immunity, autoimmunity, and autoinflammatory disorders. Immunol. Rev. 228, 312–324 (2009).

    CAS  PubMed  Google Scholar 

  55. Cloutier, J.F. & Veillette, A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J. 15, 4909–4918 (1996). The authors show that PTPN22 (PEP in mice) is associated with the inhibitory protein tyrosine kinase Csk in cells of the immune response.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Veillette, A., Latour, S. & Davidson, D. Negative regulation of immunoreceptor signaling. Annu. Rev. Immunol. 20, 669–707 (2002).

    CAS  PubMed  Google Scholar 

  57. Cloutier, J.F. & Veillette, A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J. Exp. Med. 189, 111–121 (1999). This manuscript shows that PTPN22 (PEP in mice) cooperates with Csk to inhibit TCR signaling and T cell activation, through its ability to inactivate Src family kinases and certain Src family kinase substrates.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gjörloff-Wingren, A., Saxena, M., Williams, S., Hammi, D. & Mustelin, T. Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur. J. Immunol. 29, 3845–3854 (1999).

    PubMed  Google Scholar 

  59. Wu, S., Bottini, M., Rickert, R.C., Mustelin, T. & Tautz, L. In silico screening for PTPN22 inhibitors: active hits from an inactive phosphatase conformation. ChemMedChem 4, 440–444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gregorieff, A., Cloutier, J.F. & Veillette, A. Sequence requirements for association of protein-tyrosine phosphatase PEP with the Src homology 3 domain of inhibitory tyrosine protein kinase p50(csk). J. Biol. Chem. 273, 13217–13222 (1998).

    CAS  PubMed  Google Scholar 

  61. Ghose, R., Shekhtman, A., Goger, M.J., Ji, H. & Cowburn, D. A novel, specific interaction involving the Csk SH3 domain and its natural ligand. Nat. Struct. Biol. 8, 998–1004 (2001).

    CAS  PubMed  Google Scholar 

  62. Hasegawa, K. et al. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 303, 685–689 (2004). This study provides genetic evidence in mice that PTPN22 (PEP) is a negative regulator of TCR signaling and T cell activation.

    CAS  PubMed  Google Scholar 

  63. Bottini, N. et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36, 337–338 (2004). This report shows that a PTPN22 polymorphism (R620W) is associated with a greater incidence of certain autoimmune diseases in humans.

    CAS  PubMed  Google Scholar 

  64. Vang, T. et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37, 1317–1319 (2005).

    CAS  PubMed  Google Scholar 

  65. Rieck, M. et al. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J. Immunol. 179, 4704–4710 (2007).

    CAS  PubMed  Google Scholar 

  66. Aarnisalo, J. et al. Reduced CD4+ T cell activation in children with type 1 diabetes carrying the PTPN22/Lyp 620Trp variant. J. Autoimmun. 31, 13–21 (2008).

    CAS  PubMed  Google Scholar 

  67. Habib, T. et al. Altered B cell homeostasis is associated with type I diabetes and carriers of the PTPN22 allelic variant. J. Immunol. 188, 487–496 (2012).

    CAS  PubMed  Google Scholar 

  68. Menard, L. et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. J. Clin. Invest. 121, 3635–3644 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Arechiga, A.F. et al. Cutting edge: the PTPN22 allelic variant associated with autoimmunity impairs B cell signaling. J. Immunol. 182, 3343–3347 (2009).

    CAS  PubMed  Google Scholar 

  70. Zikherman, J. et al. PTPN22 deficiency cooperates with the CD45 E613R allele to break tolerance on a non-autoimmune background. J. Immunol. 182, 4093–4106 (2009).

    CAS  PubMed  Google Scholar 

  71. Zhang, J. et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat. Genet. 43, 902–907 (2011).

    CAS  PubMed  Google Scholar 

  72. Lorenz, U. SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels. Immunol. Rev. 228, 342–359 (2009).

    PubMed  PubMed Central  Google Scholar 

  73. Daëron, M., Jaeger, S., Du Pasquier, L. & Vivier, E. Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future. Immunol. Rev. 224, 11–43 (2008).

    PubMed  Google Scholar 

  74. Stefanová, I. et al. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat. Immunol. 4, 248–254 (2003).

    PubMed  Google Scholar 

  75. Shultz, L.D. et al. Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase (Hcph) gene. Cell 73, 1445–1454 (1993).

    CAS  PubMed  Google Scholar 

  76. Tsui, H.W., Siminovitch, K.A., de Souza, L. & Tsui, F.W. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat. Genet. 4, 124–129 (1993).

    CAS  PubMed  Google Scholar 

  77. Pao, L.I. et al. B cell–specific deletion of protein-tyrosine phosphatase Shp1 promotes B-1a cell development and causes systemic autoimmunity. Immunity 27, 35–48 (2007).

    CAS  PubMed  Google Scholar 

  78. Fowler, C.C., Pao, L.I., Blattman, J.N. & Greenberg, P.D. SHP-1 in T cells limits the production of CD8 effector cells without impacting the formation of long-lived central memory cells. J. Immunol. 185, 3256–3267 (2010).

    CAS  PubMed  Google Scholar 

  79. Kwon, J. et al. Receptor-stimulated oxidation of SHP-2 promotes T-cell adhesion through SLP-76-ADAP. EMBO J. 24, 2331–2341 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Frearson, J.A. & Alexander, D.R. The phosphotyrosine phosphatase SHP-2 participates in a multimeric signaling complex and regulates T cell receptor (TCR) coupling to the Ras/mitogen-activated protein kinase (MAPK) pathway in Jurkat T cells. J. Exp. Med. 187, 1417–1426 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Salmond, R.J., Huyer, G., Kotsoni, A., Clements, L. & Alexander, D.R. The src homology 2 domain-containing tyrosine phosphatase 2 regulates primary T-dependent immune responses and Th cell differentiation. J. Immunol. 175, 6498–6508 (2005).

    CAS  PubMed  Google Scholar 

  82. Doody, K.M., Bourdeau, A. & Tremblay, M.L. T-cell protein tyrosine phosphatase is a key regulator in immune cell signaling: lessons from the knockout mouse model and implications in human disease. Immunol. Rev. 228, 325–341 (2009).

    CAS  PubMed  Google Scholar 

  83. You-Ten, K.E. et al. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J. Exp. Med. 186, 683–693 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dupuis, M., De Jesus Ibarra-Sanchez, M., Tremblay, M.L. & Duplay, P. Gr-1+ myeloid cells lacking T cell protein tyrosine phosphatase inhibit lymphocyte proliferation by an IFN-g- and nitric oxide-dependent mechanism. J. Immunol. 171, 726–732 (2003).

    CAS  PubMed  Google Scholar 

  85. Wiede, F. et al. T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J. Clin. Invest. 121, 4758–4774 (2011). This group shows that PTPN2 (T cell–protein tyrosine phosphatase) is a negative regulator of TCR and cytokine receptor signaling in T cells and that it is involved in the control of T cell tolerance.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Burton, P.R. et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007). This paper describes a polymorphism in PTPN2 that is associated with a greater incidence of autoimmune diseases in humans.

    CAS  Google Scholar 

  87. Espino-Paisan, L. et al. A polymorphism in PTPN2 gene is associated with an earlier onset of type 1 diabetes. Immunogenetics 63, 255–258 (2011).

    CAS  PubMed  Google Scholar 

  88. Thompson, S.D. et al. The susceptibility loci juvenile idiopathic arthritis shares with other autoimmune diseases extend to PTPN2, COG6, and ANGPT1. Arthritis Rheum. 62, 3265–3276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Festen, E.A. et al. A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn's disease and celiac disease. PLoS Genet. 7, e1001283 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Morgan, A.R. et al. PTPN2 but not PTPN22 is associated with Crohn's disease in a New Zealand population. Tissue Antigens 76, 119–125 (2010).

    CAS  PubMed  Google Scholar 

  91. Long, S.A. et al. An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4+ T cells. Genes Immun. 12, 116–125 (2011).

    CAS  PubMed  Google Scholar 

  92. Sun, T. et al. Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase. Cell 144, 703–718 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Davidson, D. & Veillette, A. PTP-PEST, a scaffold protein tyrosine phosphatase, negatively regulates lymphocyte activation by targeting a unique set of substrates. EMBO J. 20, 3414–3426 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Arimura, Y., Vang, T., Tautz, L., Williams, S. & Mustelin, T. TCR-induced downregulation of protein tyrosine phosphatase PEST augments secondary T cell responses. Mol. Immunol. 45, 3074–3084 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Davidson, D., Shi, X., Zhong, M.C., Rhee, I. & Veillette, A. The phosphatase PTP-PEST promotes secondary T cell responses by dephosphorylating the protein tyrosine kinase Pyk2. Immunity 33, 167–180 (2010). This report shows that PTP-PEST is a positive regulator of secondary T cell activation through its ability to dephosphorylate Pyk2 and promote T cell–T cell homoaggregate formation.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Canadian Institutes of Health Research (A.V.), the Canadian Cancer Society Research Institute (A.V.), The Canada Research Chairs program (A.V.) and the Howard Hughes Medical Institute (A.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Veillette.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhee, I., Veillette, A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat Immunol 13, 439–447 (2012). https://doi.org/10.1038/ni.2246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing