Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

WNT signaling in bone homeostasis and disease: from human mutations to treatments

Abstract

Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high–bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: WNT signaling: a simplified view.
Figure 2: WNT signaling pathway members regulate bone mass: lessons from mouse genetics.
Figure 3: Impact of WNT/β-catenin signaling on bone cells.
Figure 4: Crosstalk of WNT, PTH and BMP signaling between bone cells.

Similar content being viewed by others

References

  1. Nüsslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    PubMed  Google Scholar 

  2. Cabrera, C.V., Alonso, M.C., Johnston, P., Phillips, R.G. & Lawrence, P.A. Phenocopies induced with antisense RNA identify the wingless gene. Cell 50, 659–663 (1987).

    CAS  PubMed  Google Scholar 

  3. Nusse, R. & Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).

    CAS  PubMed  Google Scholar 

  4. Kinzler, K.W. et al. Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 251, 1366–1370 (1991).

    CAS  PubMed  Google Scholar 

  5. Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669 (1991).

    CAS  PubMed  Google Scholar 

  6. Gong, Y. et al. Osteoporosis-Pseudoglioma Syndrome Collaborative Group. LDL receptor–related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    CAS  PubMed  Google Scholar 

  7. Little, R.D. et al. A mutation in the LDL receptor–related protein 5 gene results in the autosomal dominant high–bone-mass trait. Am. J. Hum. Genet. 70, 11–19 (2002).

    CAS  PubMed  Google Scholar 

  8. Boyden, L.M. et al. High bone density due to a mutation in LDL-receptor–related protein 5. N. Engl. J. Med. 346, 1513–1521 (2002).

    CAS  PubMed  Google Scholar 

  9. Poole, K.E. et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 19, 1842–1844 (2005).

    CAS  PubMed  Google Scholar 

  10. van Bezooijen, R.L. et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. 199, 805–814 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brunkow, M.E. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. 68, 577–589 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Balemans, W. et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet. 39, 91–97 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Loots, G.G. et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res. 15, 928–935 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Balemans, W. et al. The binding between sclerostin and LRP5 is altered by DKK1 and by high–bone mass LRP5 mutations. Calcif. Tissue Int. 82, 445–453 (2008).

    CAS  PubMed  Google Scholar 

  15. Ellies, D.L. et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J. Bone Miner. Res. 21, 1738–1749 (2006).

    CAS  PubMed  Google Scholar 

  16. Ai, M., Holmen, S.L., Van Hul, W., Williams, B.O. & Warman, M.L. Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass–associated missense mutations in LRP5 affect canonical Wnt signaling. Mol. Cell. Biol. 25, 4946–4955 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cadigan, K.M. & Peifer, M. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb. Perspect. Biol. 1, a002881 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Jenny, A. Planar cell polarity signaling in the Drosophila eye. Curr. Top. Dev. Biol. 93, 189–227 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Kohn, A.D. & Moon, R.T. Wnt and calcium signaling: β-catenin–independent pathways. Cell Calcium 38, 439–446 (2005).

    CAS  PubMed  Google Scholar 

  20. van Amerongen, R. & Nusse, R. Towards an integrated view of Wnt signaling in development. Development 136, 3205–3214 (2009).

    CAS  PubMed  Google Scholar 

  21. Kikuchi, A., Yamamoto, H. & Sato, A. Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol. 19, 119–129 (2009).

    CAS  PubMed  Google Scholar 

  22. Liu, Y. et al. The orphan receptor tyrosine kinase Ror2 promotes osteoblast differentiation and enhances ex vivo bone formation. Mol. Endocrinol. 21, 376–387 (2007).

    CAS  PubMed  Google Scholar 

  23. Long, F. Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol. 13, 27–38 (2012).

    CAS  Google Scholar 

  24. Bianco, P. Minireview: the stem cell next door: skeletal and hematopoietic stem cell “niches” in bone. Endocrinology 152, 2957–2962 (2011).

    CAS  PubMed  Google Scholar 

  25. Confavreux, C.B., Levine, R.L. & Karsenty, G. A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Mol. Cell. Endocrinol. 310, 21–29 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Oury, F. et al. Endocrine regulation of male fertility by the skeleton. Cell 144, 796–809 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kennell, J.A. & MacDougald, O.A. Wnt signaling inhibits adipogenesis through β-catenin–dependent and –independent mechansims. J. Biol. Chem. 280, 24004–24010 (2005).

    CAS  PubMed  Google Scholar 

  28. Day, T.F., Guo, X., Garrett-Beal, L. & Yang, Y. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell 8, 739–750 (2005).

    CAS  PubMed  Google Scholar 

  29. Hill, T.P., Später, D., Taketo, M.M., Birchmeier, W. & Hartmann, C. Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev. Cell 8, 727–738 (2005).

    CAS  PubMed  Google Scholar 

  30. Hu, H. et al. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132, 49–60 (2005).

    CAS  PubMed  Google Scholar 

  31. Kato, M. et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157, 303–314 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bennett, C.N. et al. Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J. Bone Miner. Res. 22, 1924–1932 (2007).

    CAS  PubMed  Google Scholar 

  33. Miclea, R.L. et al. Adenomatous polyposis coli-mediated control of β-catenin is essential for both chondrogenic and osteogenic differentiation of skeletal precursors. BMC Dev. Biol. 9, 26 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. Glass, D.A. II et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751–764 (2005).

    CAS  PubMed  Google Scholar 

  35. Holmen, S.L. et al. Essential role of β-catenin in postnatal bone acquisition. J. Biol. Chem. 280, 21162–21168 (2005).

    CAS  PubMed  Google Scholar 

  36. Kramer, I. et al. Osteocyte Wnt/β-catenin signaling is required for normal bone homeostasis. Mol. Cell. Biol. 30, 3071–3085 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pederson, L., Ruan, M., Westendorf, J.J., Khosla, S. & Oursler, M.J. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc. Natl. Acad. Sci. USA 105, 20764–20769 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wei, W. et al. Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol. Cell. Biol. 31, 4706–4719 (2011).

    CAS  Google Scholar 

  39. Santiago, F., Oguma, J., Brown, A.M. & Laurence, J. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir. Biochem. Biophys. Res. Commun. 417, 223–230 (2012).

    CAS  PubMed  Google Scholar 

  40. Maeda, K. et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat. Med. 18, 405–412 (2012).

    CAS  PubMed  Google Scholar 

  41. Terauchi, M. et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 10, 229–240 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bennett, C.N. et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc. Natl. Acad. Sci. USA 102, 3324–3329 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Stevens, J.R. et al. Wnt10b deficiency results in age-dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J. Bone Miner. Res. 25, 2138–2147 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fleming, H.E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schaniel, C. et al. Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells. Blood 118, 2420–2429 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Renström, J. et al. Secreted frizzled-related protein 1 extrinsically regulates cycling activity and maintenance of hematopoietic stem cells. Cell Stem Cell 5, 157–167 (2009).

    PubMed  Google Scholar 

  47. Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    CAS  PubMed  Google Scholar 

  48. Rodda, S.J. & McMahon, A.P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231–3244 (2006).

    CAS  PubMed  Google Scholar 

  49. Zhong, Z. et al. Wntless functions in mature osteoblasts to regulate bone mass. Proc. Natl. Acad. Sci. USA 109, E2197–E2204 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nam, J.S., Turcotte, T.J., Smith, P.F., Choi, S. & Yoon, J.K. Mouse cristin/R-spondin family proteins are novel ligands for the Frizzled 8 and LRP6 receptors and activate β-catenin–dependent gene expression. J. Biol. Chem. 281, 13247–13257 (2006).

    CAS  PubMed  Google Scholar 

  51. Binnerts, M.E. et al. R Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proc. Natl. Acad. Sci. USA 104, 14700–14705 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Carmon, K.S., Gong, X., Lin, Q., Thomas, A. & Liu, Q. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling. Proc. Natl. Acad. Sci. USA 108, 11452–11457 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. de Lau, W. et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476, 293–297 (2011).

    CAS  PubMed  Google Scholar 

  54. Luo, J. et al. Regulation of bone formation and remodeling by G-protein–coupled receptor 48. Development 136, 2747–2756 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jin, Y.R., Turcotte, T.J., Crocker, A.L., Han, X.H. & Yoon, J.K. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction. Dev. Biol. 352, 1–13 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Friedman, M.S., Oyserman, S.M. & Hankenson, K.D. Wnt11 promotes osteoblast maturation and mineralization through R-spondin 2. J. Biol. Chem. 284, 14117–14125 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu, W. et al. R-spondin1 synergizes with Wnt3A in inducing osteoblast differentiation and osteoprotegerin expression. FEBS Lett. 582, 643–650 (2008).

    CAS  PubMed  Google Scholar 

  58. Smallwood, P.M., Williams, J., Xu, Q., Leahy, D.J. & Nathans, J. Mutational analysis of Norrin-Frizzled4 recognition. J. Biol. Chem. 282, 4057–4068 (2007).

    CAS  PubMed  Google Scholar 

  59. Ai, M., Heeger, S., Bartels, C.F. & Schelling, D.K. Osteoporosis-Pseudoglioma Collaborative Group. Clinical and molecular findings in osteoporosis-pseudoglioma syndrome. Am. J. Hum. Genet. 77, 741–753 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. He, X., Semenov, M., Tamai, K. & Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131, 1663–1677 (2004).

    CAS  PubMed  Google Scholar 

  61. Clément-Lacroix, P. et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl. Acad. Sci. USA 102, 17406–17411 (2005).

    PubMed  PubMed Central  Google Scholar 

  62. Cui, Y. et al. Lrp5 functions in bone to regulate bone mass. Nat. Med. 17, 684–691 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Babij, P. et al. High bone mass in mice expressing a mutant LRP5 gene. J. Bone Miner. Res. 18, 960–974 (2003).

    CAS  PubMed  Google Scholar 

  64. Yadav, V.K. et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135, 825–837 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Holmen, S.L. et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J. Bone Miner. Res. 19, 2033–2040 (2004).

    CAS  PubMed  Google Scholar 

  66. Kubota, T. et al. Lrp6 hypomorphic mutation affects bone mass through bone resorption in mice and impairs interaction with Mesd. J. Bone Miner. Res. 23, 1661–1671 (2008).

    CAS  PubMed  Google Scholar 

  67. Joeng, K.S., Schumacher, C.A., Zylstra-Diegel, C.R., Long, F. & Williams, B.O. Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo. Dev. Biol. 359, 222–229 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Winkler, D.G. et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 22, 6267–6276 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin, C. et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/β-catenin signaling. J. Bone Miner. Res. 24, 1651–1661 (2009).

    CAS  PubMed  Google Scholar 

  70. Morvan, F. et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21, 934–945 (2006).

    CAS  PubMed  Google Scholar 

  71. Li, J. et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39, 754–766 (2006).

    CAS  PubMed  Google Scholar 

  72. Li, X. et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res. 23, 860–869 (2008).

    PubMed  Google Scholar 

  73. Yan, Y. et al. Axin2 controls bone remodeling through the β-catenin–BMP signaling pathway in adult mice. J. Cell Sci. 122, 3566–3578 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kugimiya, F. et al. GSK-3β controls osteogenesis through regulating Runx2 activity. PLoS ONE 2, e837 (2007).

    PubMed  PubMed Central  Google Scholar 

  75. Hoeppner, L.H., Secreto, F.J., Razidlo, D.F., Whitney, T.J. & Westendorf, J.J. Lef1ΔN binds β-catenin and increases osteoblast activity and trabecular bone mass. J. Biol. Chem. 286, 10950–10959 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Di Benedetto, A. et al. N-cadherin and cadherin 11 modulate postnatal bone growth and osteoblast differentiation by distinct mechanisms. J. Cell Sci. 123, 2640–2648 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Almeida, M., Han, L., Martin-Millan, M., O′Brien, C.A. & Manolagas, S.C. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting β-catenin from T cell factor– to forkhead box O–mediated transcription. J. Biol. Chem. 282, 27298–27305 (2007).

    CAS  PubMed  Google Scholar 

  78. Ahn, Y., Sanderson, B.W., Klein, O.D. & Krumlauf, R. Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development 137, 3221–3231 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Veverka, V. et al. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J. Biol. Chem. 284, 10890–10900 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Weidauer, S.E. et al. NMR structure of the Wnt modulator protein Sclerostin. Biochem. Biophys. Res. Commun. 380, 160–165 (2009).

    CAS  PubMed  Google Scholar 

  81. Hens, J.R. et al. TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J. Bone Miner. Res. 20, 1103–1113 (2005).

    CAS  PubMed  Google Scholar 

  82. Li, X. et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 280, 19883–19887 (2005).

    CAS  PubMed  Google Scholar 

  83. Semënov, M., Tamai, K. & He, X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280, 26770–26775 (2005).

    PubMed  Google Scholar 

  84. Bourhis, E. et al. Wnt antagonists bind through a short peptide to the first β-propeller domain of LRP5/6. Structure 19, 1433–1442 (2011).

    CAS  PubMed  Google Scholar 

  85. Pangrazio, A. et al. Identification of the first deletion in the LRP5 gene in a patient with autosomal dominant osteopetrosis type I. Bone 49, 568–571 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Krause, C. et al. Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. J. Biol. Chem. 285, 41614–41626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Leupin, O. et al. Bone overgrowth-associated mutations in the LRP4 gene impair Sclerostin facilitator function. J. Biol. Chem. 286, 19489–19500 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bourhis, E. et al. Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J. Biol. Chem. 285, 9172–9179 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Semënov, M.V., Zhang, X. & He, X. DKK1 antagonizes Wnt signaling without promotion of LRP6 internalization and degradation. J. Biol. Chem. 283, 21427–21432 (2008).

    PubMed  PubMed Central  Google Scholar 

  90. Li, X. et al. Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J. Bone Miner. Res. 26, 2610–2621 (2011).

    CAS  PubMed  Google Scholar 

  91. Wang, F.S. et al. Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone 40, 485–492 (2007).

    CAS  PubMed  Google Scholar 

  92. Tian, X., Jee, W.S., Li, X., Paszty, C. & Ke, H.Z. Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hindlimb-immobilization rat model. Bone 48, 197–201 (2011).

    CAS  PubMed  Google Scholar 

  93. Schulze, J. et al. Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2. PLoS ONE 5, e10309 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Choi, H.Y., Dieckmann, M., Herz, J. & Niemeier, A. Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS ONE 4, e7930 (2009).

    PubMed  PubMed Central  Google Scholar 

  95. Li, X. et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat. Genet. 37, 945–952 (2005).

    CAS  PubMed  Google Scholar 

  96. Robling, A.G. et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283, 5866–5875 (2008).

    CAS  PubMed  Google Scholar 

  97. Bonewald, L.F. & Johnson, M.L. Osteocytes, mechanosensing and Wnt signaling. Bone 42, 606–615 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sabbagh, Y. et al. Repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J. Bone Miner. Res. 27, 1757–1772 (2012).

    CAS  PubMed  Google Scholar 

  99. Turner, C.H. et al. Mechanobiology of the skeleton. Sci. Signal. 2, pt3 (2009).

    PubMed  PubMed Central  Google Scholar 

  100. Gaudio, A. et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J. Clin. Endocrinol. Metab. 95, 2248–2253 (2010).

    CAS  PubMed  Google Scholar 

  101. Robinson, J.A. et al. Wnt/β-catenin signaling is a normal physiological response to mechanical loading in bone. J. Biol. Chem. 281, 31720–31728 (2006).

    CAS  PubMed  Google Scholar 

  102. Sawakami, K. et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J. Biol. Chem. 281, 23698–23711 (2006).

    CAS  PubMed  Google Scholar 

  103. Saxon, L.K., Jackson, B.F., Sugiyama, T., Lanyon, L.E. & Price, J.S. Analysis of multiple bone responses to graded strains above functional levels, and to disuse, in mice in vivo show that the human Lrp5 G171V high bone mass mutation increases the osteogenic response to loading but that lack of Lrp5 activity reduces it. Bone 49, 184–193 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Nakashima, T. et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17, 1231–1234 (2011).

    CAS  PubMed  Google Scholar 

  105. Xiong, J. et al. Matrix-embedded cells control osteoclast formation. Nat. Med. 17, 1235–1241 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bonewald, L.F. The amazing osteocyte. J. Bone Miner. Res. 26, 229–238 (2011).

    CAS  PubMed  Google Scholar 

  107. Qin, L., Raggatt, L.J. & Partridge, N.C. Parathyroid hormone: a double-edged sword for bone metabolism. Trends Endocrinol. Metab. 15, 60–65 (2004).

    CAS  PubMed  Google Scholar 

  108. Keller, H. & Kneissel, M. SOST is a target gene for PTH in bone. Bone 37, 148–158 (2005).

    CAS  PubMed  Google Scholar 

  109. Bellido, T. et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146, 4577–4583 (2005).

    CAS  PubMed  Google Scholar 

  110. Li, X. et al. Determination of dual effects of parathyroid hormone on skeletal gene expression in vivo by microarray and network analysis. J. Biol. Chem. 282, 33086–33097 (2007).

    CAS  PubMed  Google Scholar 

  111. Guo, J. et al. Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab. 11, 161–171 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Costa, A.G. et al. Circulating Sclerostin in disorders of parathyroid gland function. J. Clin. Endocrinol. Metab. 96, 3804–3810 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kaji, H., Imanishi, Y., Sugimoto, T. & Seino, S. Comparisons of serum sclerostin levels among patients with postmenopausal osteoporosis, primary hyperparathyroidism and osteomalacia. Exp. Clin. Endocrinol. Diabetes 119, 440–444 (2011).

    CAS  PubMed  Google Scholar 

  114. van Lierop, A.H., Witteveen, J.E., Hamdy, N.A. & Papapoulos, S.E. Patients with primary hyperparathyroidism have lower circulating sclerostin levels than euparathyroid controls. Eur. J. Endocrinol. 163, 833–837 (2010).

    CAS  PubMed  Google Scholar 

  115. Drake, M.T. et al. Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J. Clin. Endocrinol. Metab. 95, 5056–5062 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kramer, I., Loots, G.G., Studer, A., Keller, H. & Kneissel, M. Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J. Bone Miner. Res. 25, 178–189 (2010).

    CAS  PubMed  Google Scholar 

  117. Robling, A.G. et al. Anabolic and catabolic regimens of human parathyroid hormone 1–34 elicit bone- and envelope-specific attenuation of skeletal effects in Sost-deficient mice. Endocrinology 152, 2963–2975 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rhee, Y. et al. PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J. Bone Miner. Res. 26, 1035–1046 (2011).

    CAS  PubMed  Google Scholar 

  119. Bodine, P.V., Seestaller-Wehr, L., Kharode, Y.P., Bex, F.J. & Komm, B.S. Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1. J. Cell. Physiol. 210, 352–357 (2007).

    CAS  PubMed  Google Scholar 

  120. Yao, W. et al. Overexpression of secreted frizzled-related protein 1 inhibits bone formation and attenuates parathyroid hormone bone anabolic effects. J. Bone Miner. Res. 25, 190–199 (2010).

    CAS  PubMed  Google Scholar 

  121. O′Brien, C.A. et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS ONE 3, e2942 (2008).

    PubMed  PubMed Central  Google Scholar 

  122. Powell, W.F. Jr. et al. Targeted ablation of the PTH/PTHrP receptor in osteocytes impairs bone structure and homeostatic calcemic responses. J. Endocrinol. 209, 21–32 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wan, M. et al. Parathyroid hormone signaling through low-density lipoprotein–related protein 6. Genes Dev. 22, 2968–2979 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu, J.Y. et al. Gsα enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. J. Clin. Invest. 121, 3492–3504 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sieber, C., Kopf, J., Hiepen, C. & Knaus, P. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 20, 343–355 (2009).

    CAS  PubMed  Google Scholar 

  126. Guo, X. & Wang, X.F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res. 19, 71–88 (2009).

    CAS  PubMed  Google Scholar 

  127. Lin, G.L. & Hankenson, K.D. Integration of BMP, Wnt, and Notch signaling pathways in osteoblast differentiation. J. Cell. Biochem. 112, 3491–3501 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kamiya, N. The role of BMPs in bone anabolism and their potential targets SOST and DKK1. Curr. Mol. Pharmacol. 5, 153–163 (2012).

    CAS  PubMed  Google Scholar 

  129. Bain, G., Müller, T., Wang, X. & Papkoff, J. Activated β-catenin induces osteoblast differentiation of C3H10T1/2 cells and participates in BMP2 mediated signal transduction. Biochem. Biophys. Res. Commun. 301, 84–91 (2003).

    CAS  PubMed  Google Scholar 

  130. Lintern, K.B., Guidato, S., Rowe, A., Saldanha, J.W. & Itasaki, N. Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals. J. Biol. Chem. 284, 23159–23168 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kamiya, N., Kaartinen, V.M. & Mishina, Y. Loss-of-function of ACVR1 in osteoblasts increases bone mass and activates canonical Wnt signaling through suppression of Wnt inhibitors SOST and DKK1. Biochem. Biophys. Res. Commun. 414, 326–330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kaplan, F.S. et al. Investigations of activated ACVR1/ALK2, a bone morphogenetic protein type I receptor, that causes fibrodysplasia ossificans progressiva. Methods Enzymol. 484, 357–373 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Baud′huin, M. et al. A soluble bone morphogenetic protein type IA receptor increases bone mass and bone strength. Proc. Natl. Acad. Sci. USA 109, 12207–12212 (2012).

    PubMed  PubMed Central  Google Scholar 

  134. Canalis, E., Brunet, L.J., Parker, K. & Zanotti, S. Conditional inactivation of noggin in the postnatal skeleton causes osteopenia. Endocrinology 153, 1616–1626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mbalaviele, G., Shin, C.S. & Civitelli, R. Cell-cell adhesion and signaling through cadherins: connecting bone cells in their microenvironment. J. Bone Miner. Res. 21, 1821–1827 (2006).

    CAS  PubMed  Google Scholar 

  136. Haÿ, E. et al. N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/β-catenin signaling, osteoblast function, and bone formation. Mol. Cell. Biol. 29, 953–964 (2009).

    PubMed  Google Scholar 

  137. Barros, E.R., Dias da Silva, M.R., Kunii, I.S. & Lazaretti-Castro, M. Three years follow-up of pamidronate therapy in two brothers with osteoporosis-pseudoglioma syndrome (OPPG) carrying an LRP5 mutation. J. Pediatr. Endocrinol. Metab. 21, 811–818 (2008).

    PubMed  Google Scholar 

  138. Cheung, W.M. et al. A family with osteoporosis pseudoglioma syndrome due to compound heterozygosity of two novel mutations in the LRP5 gene. Bone 39, 470–476 (2006).

    CAS  PubMed  Google Scholar 

  139. Laine, C.M. et al. Novel mutations affecting LRP5 splicing in patients with osteoporosis-pseudoglioma syndrome (OPPG). Eur. J. Hum. Genet. 19, 875–881 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Streeten, E.A. et al. Osteoporosis-pseudoglioma syndrome: description of 9 new cases and beneficial response to bisphosphonates. Bone 43, 584–590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Korvala, J. et al. Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med. Genet. 13, 26 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Rickels, M.R., Zhang, X., Mumm, S. & Whyte, M.P. Oropharyngeal skeletal disease accompanying high bone mass and novel LRP5 mutation. J. Bone Miner. Res. 20, 878–885 (2005).

    CAS  PubMed  Google Scholar 

  143. Van Wesenbeeck, L. et al. Six novel missense mutations in the LDL receptor–related protein 5 (LRP5) gene in different conditions with an increased bone density. Am. J. Hum. Genet. 72, 763–771 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Mani, A. et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315, 1278–1282 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim, S.J. et al. Identification of signal peptide domain SOST mutations in autosomal dominant craniodiaphyseal dysplasia. Hum. Genet. 129, 497–502 (2011).

    CAS  PubMed  Google Scholar 

  146. van Lierop, A.H. et al. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J. Bone Miner. Res. 26, 2804–2811 (2011).

    CAS  PubMed  Google Scholar 

  147. Hall, C.L., Kang, S., MacDougald, O.A. & Keller, E.T. Role of Wnts in prostate cancer bone metastases. J. Cell. Biochem. 97, 661–672 (2006).

    CAS  PubMed  Google Scholar 

  148. Pinzone, J.J. et al. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 113, 517–525 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kansara, M. et al. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J. Clin. Invest. 119, 837–851 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Perdu, B. et al. Osteopathia striata with cranial sclerosis owing to WTX gene defect. J. Bone Miner. Res. 25, 82–90 (2010).

    CAS  PubMed  Google Scholar 

  151. Moisan, A. et al. The WTX tumor suppressor regulates mesenchymal progenitor cell fate specification. Dev. Cell 20, 583–596 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Sims, A.M. et al. Genetic analyses in a sample of individuals with high or low BMD shows association with multiple Wnt pathway genes. J. Bone Miner. Res. 23, 499–506 (2008).

    CAS  PubMed  Google Scholar 

  153. van Meurs, J.B. et al. GENOMOS Study. Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. J. Am. Med. Assoc. 299, 1277–1290 (2008).

    CAS  Google Scholar 

  154. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Li, W.F. et al. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum. Genet. 127, 249–285 (2010).

    CAS  PubMed  Google Scholar 

  156. Richards, J.B. et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371, 1505–1512 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Rivadeneira, F. et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 41, 1199–1206 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Styrkarsdottir, U. et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358, 2355–2365 (2008).

    CAS  PubMed  Google Scholar 

  159. Styrkarsdottir, U. et al. New sequence variants associated with bone mineral density. Nat. Genet. 41, 15–17 (2009).

    CAS  PubMed  Google Scholar 

  160. Huang, Q.Y., Li, G.H. & Kung, A.W. The –9247 T/C polymorphism in the SOST upstream regulatory region that potentially affects C/EBPα and FOXA1 binding is associated with osteoporosis. Bone 45, 289–294 (2009).

    CAS  PubMed  Google Scholar 

  161. Yerges, L.M. et al. High-density association study of 383 candidate genes for volumetric BMD at the femoral neck and lumbar spine among older men. J. Bone Miner. Res. 24, 2039–2049 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Leupin, O. et al. Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J. Bone Miner. Res. 22, 1957–1967 (2007).

    CAS  PubMed  Google Scholar 

  163. Miller, P.D. & Derman, R.J. What is the best balance of benefits and risks among anti-resorptive therapies for postmenopausal osteoporosis? Osteoporos. Int. 21, 1793–1802 (2010).

    CAS  PubMed  Google Scholar 

  164. Baron, R., Ferrari, S. & Russell, R.G. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 48, 677–692 (2011).

    CAS  PubMed  Google Scholar 

  165. Rubin, M.R. & Bilezikian, J.P. Parathyroid hormone as an anabolic skeletal therapy. Drugs 65, 2481–2498 (2005).

    CAS  PubMed  Google Scholar 

  166. Hodsman, A.B. et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr. Rev. 26, 688–703 (2005).

    CAS  PubMed  Google Scholar 

  167. McClung, M.R. et al. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch. Intern. Med. 165, 1762–1768 (2005).

    CAS  PubMed  Google Scholar 

  168. Paszty, C., Turner, C.H. & Robinson, M.K. Sclerostin: a gem from the genome leads to bone-building antibodies. J. Bone Miner. Res. 25, 1897–1904 (2010).

    CAS  PubMed  Google Scholar 

  169. Padhi, D., Jang, G., Stouch, B., Fang, L. & Posvar, E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J. Bone Miner. Res. 26, 19–26 (2011).

    CAS  PubMed  Google Scholar 

  170. Kramer, I., Keller, H., Leupin, O. & Kneissel, M. Does osteocytic SOST suppression mediate PTH bone anabolism? Trends Endocrinol. Metab. 21, 237–244 (2010).

    CAS  PubMed  Google Scholar 

  171. Fox, J. et al. Effects of daily treatment with parathyroid hormone 1–84 for 16 months on density, architecture and biomechanical properties of cortical bone in adult ovariectomized rhesus monkeys. Bone 41, 321–330 (2007).

    CAS  PubMed  Google Scholar 

  172. Lindsay, R. et al. Effects of a one-month treatment with PTH(1–34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J. Bone Miner. Res. 22, 495–502 (2007).

    CAS  PubMed  Google Scholar 

  173. Li, X. et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J. Bone Miner. Res. 24, 578–588 (2009).

    CAS  PubMed  Google Scholar 

  174. Ominsky, M.S. et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J. Bone Miner. Res. 25, 948–959 (2010).

    CAS  PubMed  Google Scholar 

  175. Crabtree, N. et al. Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J. Bone Miner. Res. 16, 1318–1328 (2001).

    CAS  PubMed  Google Scholar 

  176. Epstein, S. Is cortical bone hip? What determines cortical bone properties? Bone 41 (suppl. 1), S3–S8 (2007).

    PubMed  Google Scholar 

  177. Zebaze, R.M. et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375, 1729–1736 (2010).

    PubMed  Google Scholar 

  178. Glantschnig, H. et al. A rate-limiting role for dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody. J. Pharmacol. Exp. Ther. 338, 568–578 (2011).

    CAS  PubMed  Google Scholar 

  179. Fulciniti, M. et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114, 371–379 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Heath, D.J. et al. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J. Bone Miner. Res. 24, 425–436 (2009).

    CAS  PubMed  Google Scholar 

  181. Sieper, J. Spondyloarthropathies in 2010: new insights into therapy—TNF blockade and beyond. Nat. Rev. Rheumatol. 7, 78–80 (2011).

    CAS  PubMed  Google Scholar 

  182. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    CAS  PubMed  Google Scholar 

  183. Krönke, G. et al. R-spondin 1 protects against inflammatory bone damage during murine arthritis by modulating the Wnt pathway. Arthritis Rheum. 62, 2303–2312 (2010).

    PubMed  Google Scholar 

  184. Uderhardt, S. et al. Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann. Rheum. Dis. 69, 592–597 (2010).

    CAS  PubMed  Google Scholar 

  185. Appel, H. et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 60, 3257–3262 (2009).

    PubMed  Google Scholar 

  186. Agholme, F., Li, X., Isaksson, H., Ke, H.Z. & Aspenberg, P. Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J. Bone Miner. Res. 25, 2412–2418 (2010).

    CAS  PubMed  Google Scholar 

  187. Ominsky, M.S. et al. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J. Bone Miner. Res. 26, 1012–1021 (2011).

    CAS  PubMed  Google Scholar 

  188. Gaur, T. et al. Secreted frizzled related protein 1 is a target to improve fracture healing. J. Cell. Physiol. 220, 174–181 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Komatsu, D.E. et al. Modulation of Wnt signaling influences fracture repair. J. Orthop. Res. 28, 928–936 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Agholme, F., Isaksson, H., Kuhstoss, S. & Aspenberg, P. The effects of Dickkopf-1 antibody on metaphyseal bone and implant fixation under different loading conditions. Bone 48, 988–996 (2011).

    CAS  PubMed  Google Scholar 

  191. Sinder, B.P. et al. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J. Bone Miner. Res. 28, 73–80 (2013).

    CAS  PubMed  Google Scholar 

  192. Bodine, P.V. et al. A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation. Bone 44, 1063–1068 (2009).

    CAS  PubMed  Google Scholar 

  193. Moore, W.J. et al. Modulation of Wnt signaling through inhibition of secreted frizzled-related protein I (sFRP-1) with N-substituted piperidinyl diphenylsulfonyl sulfonamides: part II. Bioorg. Med. Chem. 18, 190–201 (2010).

    CAS  PubMed  Google Scholar 

  194. Shi, M. et al. Identification of iminooxothiazolidines as secreted frizzled related protein-1 inhibitors. Bioorg. Med. Chem. Lett. 19, 6337–6339 (2009).

    CAS  PubMed  Google Scholar 

  195. Warden, S.J. et al. Psychotropic drugs have contrasting skeletal effects that are independent of their effects on physical activity levels. Bone 46, 985–992 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Kulkarni, N.H. et al. Orally bioavailable GSK-3α/β dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J. Bone Miner. Res. 21, 910–920 (2006).

    CAS  PubMed  Google Scholar 

  197. Bolton, J.M. et al. Fracture risk from psychotropic medications: a population-based analysis. J. Clin. Psychopharmacol. 28, 384–391 (2008).

    PubMed  Google Scholar 

  198. Vestergaard, P., Rejnmark, L. & Mosekilde, L. Reduced relative risk of fractures among users of lithium. Calcif. Tissue Int. 77, 1–8 (2005).

    CAS  PubMed  Google Scholar 

  199. Borchert, K.M. et al. High-content screening assay for activators of the Wnt/Fzd pathway in primary human cells. Assay Drug Dev. Technol. 3, 133–141 (2005).

    CAS  PubMed  Google Scholar 

  200. Verkaar, F., van der Stelt, M., Blankesteijn, W.M., van der Doelen, A.A. & Zaman, G.J. Discovery of novel small molecule activators of β-catenin signaling. PLoS ONE 6, e19185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Johnson, E.B., Hammer, R.E. & Herz, J. Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum. Mol. Genet. 14, 3523–3538 (2005).

    CAS  PubMed  Google Scholar 

  202. Collette, N.M., Genetos, D.C., Murugesh, D., Harland, R.M. & Loots, G.G. Genetic evidence that SOST inhibits WNT signaling in the limb. Dev. Biol. 342, 169–179 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Niemann, S. et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am. J. Hum. Genet. 74, 558–563 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Woods, C.G. et al. Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome. Am. J. Hum. Genet. 79, 402–408 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Galceran, J., Farinas, I., Depew, M.J., Clevers, H. & Grosschedl, R. Wnt3a−/−-like phenotype and limb deficiency in Lef1−/−Tcf1−/− mice. Genes Dev. 13, 709–717 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Parr, B.A. & McMahon, A.P. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374, 350–353 (1995).

    CAS  PubMed  Google Scholar 

  207. Guo, X. et al. Wnt/β-catenin signaling is sufficient and necessary for synovial joint formation. Genes Dev. 18, 2404–2417 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Hartmann, C. & Tabin, C.J. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell 104, 341–351 (2001).

    CAS  PubMed  Google Scholar 

  209. Wang, B., Sinha, T., Jiao, K., Serra, R. & Wang, J. Disruption of PCP signaling causes limb morphogenesis and skeletal defects and may underlie Robinow syndrome and brachydactyly type B. Hum. Mol. Genet. 20, 271–285 (2011).

    CAS  PubMed  Google Scholar 

  210. Jin, Y.R., Turcotte, T.J., Crocker, A.L., Han, X.H. & Yoon, J.K. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction. Dev. Biol. 352, 1–13 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. DeChiara, T.M. et al. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat. Genet. 24, 271–274 (2000).

    CAS  PubMed  Google Scholar 

  212. Lyashenko, N. et al. Mice lacking the orphan receptor ror1 have distinct skeletal abnormalities and are growth retarded. Dev. Dyn. 239, 2266–2277 (2010).

    CAS  PubMed  Google Scholar 

  213. Mikels, A., Minami, Y. & Nusse, R. Ror2 receptor requires tyrosine kinase activity to mediate Wnt5A signaling. J. Biol. Chem. 284, 30167–30176 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Witte, F., Chan, D., Economides, A.N., Mundlos, S. & Stricker, S. Receptor tyrosine kinase-like orphan receptor 2 (ROR2) and Indian hedgehog regulate digit outgrowth mediated by the phalanx-forming region. Proc. Natl. Acad. Sci. USA 107, 14211–14216 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Tu, X. et al. Noncanonical Wnt signaling through G protein–linked PKCδ activation promotes bone formation. Dev. Cell 12, 113–127 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Takada, I. et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation. Nat. Cell Biol. 9, 1273–1285 (2007).

    CAS  PubMed  Google Scholar 

  217. Albers, J. et al. Control of bone formation by the serptentine receptor Frizzled-9. J. Cell Biol. 192, 1057–1072 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Bodine, P.V. et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol. 18, 1222–1237 (2004).

    CAS  PubMed  Google Scholar 

  219. Häusler, K.D. et al. Secreted frizzled-related protein-1 inhibits RANKL-dependent osteoclast formation. J. Bone Miner. Res. 19, 1873–1881 (2004).

    PubMed  Google Scholar 

  220. Nakanishi, R. et al. Osteoblast-targeted expression of Sfrp4 in mice results in low bone mass. J. Bone Miner. Res. 23, 271–277 (2008).

    CAS  PubMed  Google Scholar 

  221. Berndt, T. et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J. Clin. Invest. 112, 785–794 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Cho, H.Y. et al. Transgenic mice overexpressing secreted frizzled-related proteins (sFRP)4 under the control of serum amyloid P promoter exhibit low bone mass but did not result in disturbed phosphate homeostasis. Bone 47, 263–271 (2010).

    CAS  PubMed  Google Scholar 

  223. Christov, M., Koren, S., Yuan, Q., Baron, R. & Lanske, B. Genetic ablation of sfrp4 in mice does not affect serum phosphate homeostasis. Endocrinology 152, 2031–2036 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Morello, R. et al. Brachy-syndactyly caused by loss of Sfrp2 function. J. Cell. Physiol. 217, 127–137 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Nakajima, H. et al. Wnt modulators, SFRP-1, and SFRP-2 are expressed in osteoblasts and differentially regulate hematopoietic stem cells. Biochem. Biophys. Res. Commun. 390, 65–70 (2009).

    CAS  PubMed  Google Scholar 

  226. Cho, S.W. et al. Wnt inhibitory factor (WIF)-1 inhibits osteoblastic differentiation in mouse embryonic mesenchymal cells. Bone 44, 1069–1077 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.B. is supported in part by grants from the US National Institutes of Health (National Institute of Arthritis and Musculoskeletal and Skin Diseases and National Institute on Aging).

Author information

Authors and Affiliations

Authors

Contributions

R.B. and M.K. wrote the paper and drew the figures.

Corresponding author

Correspondence to Roland Baron.

Ethics declarations

Competing interests

R.B. consults for Amgen, Eli Lilly, Novartis and Merck and has a research contract with Merck. M.K. works for Novartis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baron, R., Kneissel, M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19, 179–192 (2013). https://doi.org/10.1038/nm.3074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing