Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fas ligand in human serum

Abstract

The Fas ligand (FasL), a member of the tumor necrosis factor family, induces apoptosis in Fas–bearing cells. The membrane–bound human FasL was found to be converted to a soluble form (sFasL) by the action of a matrix metalloproteinase–like enzyme. Two neutralizing monoclonal anti–human FasL antibodies were identified, and an enzyme–linked immunosorbent assay (ELISA) for sFasL in human sera was established. Sera from healthy persons did not contain a detectable level of sFasL, whereas those from patients with large granular lymphocytic (LCL) leukemia and natural killer (NK) cell lymphoma did. These malignant cells constitutively expressed FasL, whereas peripheral NK cells from healthy persons expressed FasL only on activation. These results suggested that the systemic tissue damage seen in most patients with LGL leukemia and NK–type lymphoma is due to sFasL produced by these malignant cells. Neutralizing anti–FasL antibodies or matrix metalloproteinase inhibitors may be of use in modulating such tissue damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gruss, H.-J. & Dower, S. Tumor necrosis factor ligand superfamily: Involvement in the pathology of malignant lymphoma. Blood 85, 3378–3404 (1995).

    CAS  PubMed  Google Scholar 

  2. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand: A novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Smith, C.A., Farrah, T. & Goodwin, R.G. The TNF receptor superfamily of cellular and viral proteins: Activation, costimulation, and death. Cell 76, 959–962 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Suda, T. et al. Expression of the Fas ligand in T-cell-lineage. J. Immunol. 154, 3806–3813 (1995).

    CAS  PubMed  Google Scholar 

  6. Vignaux, F. et al. TCR/CD3 coupling to Fas-based cytotoxicity. J. Exp. Med. 181, 781–786 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe-Fukunaga, R. et al. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J. Immunol. 148, 1274–1279 (1992).

    CAS  PubMed  Google Scholar 

  8. Adachi, M. et al. Targeted mutation in the Fas gene causes hyperplasia in the peripheral lymphoid organs and liver. Nature Genet. 11, 294–300 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Adachi, M. et al. Enhanced and accelerated lymphoproliferation in Fas-null mice. Proc. Natl. Acad. Sci. USA (in the press).

  10. Nagata, S. & Suda, T. Fas and Fas ligand: Ipr and gld mutations. Immunol. Today 16, 39–43 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Griffith, T., Brunner, T., Fletcher, S., Green, D. & Ferguson, T. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Bellgrau, D. et al. A role for CD9S ligand in preventing graft rejection. Nature 377, 630–632 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–976 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A., Sc Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Hiramatsu, N. et al. Immunohistochemical detection of Fas antigen in liver tissue of patients with chronic hepatitis C. Hepatology 19, 1354–1359 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Debatin, K.-M. et al. High expression of APO-1 (CD95) on T lymphocytes from human immunodeficiency virus-1-infected children. Blood 83, 3101–3103 (1994).

    CAS  PubMed  Google Scholar 

  19. Katsikis, P., Wunderlich, E., Smith, C., Herzenberg, L. & Herzenberg, L. Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals. J. Exp. Med. 181, 2029–2036 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Falk, M.H. et al. Expression of the APO-1 antigen in Burkitt lymphoma cell lines correlates with a shift towards a lymphoblastoid phenotype. Blood 79, 3300–3306 (1992).

    CAS  PubMed  Google Scholar 

  21. Ogasawara, J. et al. Lethal effect of the anti-Fas antibody in mice. Nature 364, 806–809 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Fiers, W. Tumor necrosis factor: Characterization at the molecular, cellular and in vivo level. FEBS Lett. 285, 199–212 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Vassalli, P. The pathophysiology of tumor necrosis factors. Annu. Rev. Immunol. 10, 411–452 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Mohler, K.M. et al. Protection against a lethal dose of endotoxin by an inhibitor of tumor necrosis factor processing. Nature 370, 218–220 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. McGeehan, G.M. et al. Regulation of tumor necrosis factor-a processing by a metal-loproteinase inhibitor. Nature 370, 558–561 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Gearing, A.J.H. et al. Processing of tumor necrosis factor-a precursor by metallopro-teinases. Nature 370, 555–557 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Beutler, B. & Cerami, A. Cachectin and tumor necrosis factor as two sides of the same biological coin. Nature 320, 584–588 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Tanaka, M., Suda, T., Takahashi, T. & Nagata, S. Expression of the functional soluble form of human Fas ligand in activated lymphocytes. EMBO J. 14, 1129–1135 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loughran, T.P., Clonal diseases of large granular lymphocytes. Blood 82, 1–14 (1993).

    PubMed  Google Scholar 

  30. Takahashi, T. et al. Human Fas ligand: Gene structure, chromosomal location and species specificity. Int. Immunol. 6, 1567–1574 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Suda, T. & Nagata, S. Purification and characterization of the Fas ligand that induces apoptosis. J. Exp. Med. 179, 873–878 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Tagawa, S. et al. Transformation of large granular lymphocytic leukemia during the course of a reactive human herpesvirus-6 infection. Leukemia 6, 465–469 (1992).

    CAS  PubMed  Google Scholar 

  33. Tagawa, S., Hatakeyama, M., Shibano, M., Taniguchi, T. & Kitani, T. The expression of the p75 subunit of interleukin 2 receptor in Tac negative leukemic cells of two patients with large granular lymphocytic leukemia. Blood 71, 1161–1164 (1988).

    CAS  PubMed  Google Scholar 

  34. Kagi, D. et al. Fas and perform pathway as major mechanisms of T cell-mediated cvtotoxicity. Science 265, 528–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Kojima, H. et al. Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity 1, 357–364 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Lowin, B., Hahne, M., Mattmann, C. & Tschopp, J., T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370, 650–652 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Kataoka, T. et al. Acidification is essential for maintaining the structure and function of lytic granules of CTL. J. Immunol. 153, 3938–3947 (1994).

    CAS  PubMed  Google Scholar 

  38. Chehimi, J. et al. Natural killer (NK) cell stimulatory factor increases the cytotoxic activity of NK cells from both healthy donors and human immunodeficiency virus-infected patients. J. Exp. Med. 175, 789–796 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Iwai, K. et al. Differential expression of bcl-2 and susceptibility to anti-Fas-mediated cell death in peripheral blood lymphocytes, monocytes, and neutrophils. Blood 84, 1201–1208 (1994).

    CAS  PubMed  Google Scholar 

  40. Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Arase, H., Arase, N. & Saito, T. Fas-mediated cytotoxicity by freshly isolated natural killer cells. J. Exp. Med. 181, 1235–1238 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Leithauser, F. et al. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab. Invest. 69, 415–429 (1993).

    CAS  PubMed  Google Scholar 

  43. Owen-Schaub, L.B., Meterissian, S. & Ford, R.J. Fas/APO-1 expression and function on malignant cells of hematologic and nonhematologic origin. J. Immunother. 14, 234–241 (1993).

    Article  CAS  Google Scholar 

  44. Gumperz, J.E. & Parham, P. The enigma of the natural killer cell. Nature 378, 245–248 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Yokoyama, W. Natural killer cell receptors specific for major rustocompatibility complex class I molecule. Proc. Natl. Acad. Sci. USA 92, 3081–3085 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ameisen, J., Estaquier, J., Idziorek, T. & De Bels, F. Programmed cell death and AIDS: Significance, perspective and unanswered questions. Cell Death Differ. 2, 9–22 (1995).

    CAS  PubMed  Google Scholar 

  47. Gougeon, M. Does apoptosis contribute to CD4 T cell depletion in human immunodeficiency virus infection? Cell Death Differ. 2, 1–8 (1995).

    CAS  PubMed  Google Scholar 

  48. Enari, M., Hug, H. & Nagata, S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375, 78–81 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Clare, J.J. et al. Production of mouse epidermal growth factor in yeast: High-level secretion using Pichia pastoris strains containing multiple gene copies. Gene 105, 205–212 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Mizushima, S. & Nagata, S. pEF-BOS: A powerful mammalian expression vector. Nucleic Acids Res. 18, 5322 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M., Suda, T., Haze, K. et al. Fas ligand in human serum. Nat Med 2, 317–322 (1996). https://doi.org/10.1038/nm0396-317

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0396-317

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing