Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies

Abstract

Changes in CD4+ T-cell surface marker phenotype and antigen receptor (TCR) repertoire were examined during the course of HIV infection and following therapy. A preferential decline in naive CD4+ T cells was noted as disease progressed. Following protease inhibitor therapy, naive CD4+ T cells increased only if they were present before initiation of therapy. Disruptions of the CD4+ TCR repertoire were most prevalent in patients with the lowest CD4+ T-cell counts. Antiviral or IL-12 therapy-induced increases in CD4+ T-cell counts led to only minor changes in previously disrupted repertoires. Thus, CD4+ T-cell death mediated by HIV-1 infection may result in a preferential decline in the number of naive CD4+ T cells and disruptions of the CD4+T-cell repertoire that are not immediately corrected by antiviral or immune-based therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lane, H.C. et al. Qualitative analysis of immune function in patients with the acquired immunodeficiency syndrome. N. Engl. J. Med. 313, 79–84 (1985).

    Article  CAS  Google Scholar 

  2. Miedema, F. et al. Immunological abnormalities in human immunodeficiency virus (HIV)-infected asymptomatic homosexual men: HIV affects the immune system before CD4+ T cell depletion occurs. J. Clin. Invest. 82, 1908–1914 (1988).

    Article  CAS  Google Scholar 

  3. Clerici, M. et al. Detection of three distinct patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients. J. Clin. Invest. 84, 1892–1899 (1989).

    Article  CAS  Google Scholar 

  4. Lucey, D.R. et al. Human immunodeficiency virus infection in the US Air Force: Seroconversions, clinical staging and assessment of T helper cell functional assay to predict change in CD4+ T cell counts. J Infect. Dis. 164, 631–637 (1991).

    Article  CAS  Google Scholar 

  5. Gray, D. Immunological memory. Annu. Rev. Immunol. 11, 49–77 (1993).

    Article  CAS  Google Scholar 

  6. Zinkernagel, R.M. The role of antigen in maintaining T cell memory. Dev Biol, Stand. 82, 189–191 (1994).

    CAS  Google Scholar 

  7. Sanders, M.E. et al. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J. Immunol. 140, 1401–1407 (1988).

    CAS  PubMed  Google Scholar 

  8. Salmon, M., Kitas, C.D. & Bacon, P.A. Production of lymphokine mRNA by CD45R+ and CD45R- helper T cells from human peripheral blood and by human CD4+ T cell clones. J. Immunol. 143, 907–912 (1989).

    CAS  PubMed  Google Scholar 

  9. Sprent, J. & Tough, D.F. Lymphocyte life-span and memory. Science 265, 1395–1400 (1994).

    Article  CAS  Google Scholar 

  10. Tough, D.F. & Sprent, J. Turnover of naive- and memory-phenotype T cells. J. Exp. Med. 179, 1127–1135 (1994).

    Article  CAS  Google Scholar 

  11. Beverley, P.C. Functional analysis of human T cell subsets defined by CD45 isoform expression. Semin. Immunol. 4, 35–41 (1992).

    CAS  PubMed  Google Scholar 

  12. Mclean, A.R. & Michie, C.A. In vivo estimates of division and death rates of human T lymphocytes. Proc. Natl. Acad. Sci. USA 92, 3707–3711 (1995).

    Article  CAS  Google Scholar 

  13. Trowbridge, I.S. & Thomas, M.L. CD45: An emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12, 85–116 (1994).

    Article  CAS  Google Scholar 

  14. Sprent, J. Lifespans of naive, memory and effector lymphocytes. Curr. Opin. Immunol. 5, 433–438 (1993).

    Article  CAS  Google Scholar 

  15. Mackall, C.L. et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N. Engl. J. Med. 332 143–149 (1995).

    Article  CAS  Google Scholar 

  16. Steis, R.C. et al. Kinetics of recovery of CD4+ T cells in peripheral blood of deoxycoformycin-treated patients. J Natl. Cancer Inst. 83 1678–1679 (1991).

    Article  CAS  Google Scholar 

  17. Puisieux, I. et al. Oligoclonality of tumor-infiltrating lymphocytes from human melanomas. J. Immunol. 153, 2807–2818 (1994).

    CAS  PubMed  Google Scholar 

  18. Gulwani-Akolkar, B. et al. T cell receptor V-segment frequencies in peripheral blood T cells correlate with human leukocyte antigen type. J. Exp. Med. 174, 1139–1146 (1991).

    Article  CAS  Google Scholar 

  19. Cibotti, R. et al. Public and private Vβ T cell receptor repertoires against hen egg white lysozyme (HEL) in nontransgenic versus HEL transgenic mice. J. Exp. Med. 180, 861–872 (1994).

    Article  CAS  Google Scholar 

  20. Cochet, M. et al. Molecular detection and in vivo analysis of the specific T cell response to a protein antigen. Eur. J. Immunol. 22, 2639–2647 (1992).

    Article  CAS  Google Scholar 

  21. Kovacs, J.A. et al. Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N. Engl. J. Med. 335, 1350–1356 (1996).

    Article  CAS  Google Scholar 

  22. Chou, C.C. et al. Phenotypically defined memory CD4+ cells are not selectively decreased in chronic HIV disease. J. Acquir. Immune Defic. Syndr. 7, 665–675 (1994).

    CAS  PubMed  Google Scholar 

  23. Roederer, M. et al. CD8 naive T cell counts decrease progressively in HIV-infected adults. J. Clin. Invest. 95, 2061–2066 (1995).

    Article  CAS  Google Scholar 

  24. Rabin, R.L. et al. Altered representation of naive and memory CD8 T cell subsets in HIV-infected children. J. Clin. Invest. 95, 2054–2060 (1995).

    Article  CAS  Google Scholar 

  25. Schnittman, S.M. et al. Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: Evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc. Natl. Acad. Sci. USA 87, 6058–6062 (1990).

    Article  CAS  Google Scholar 

  26. Stanley, S.K. et al. Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse. J. Exp. Med. 178, 1151–1163 (1993).

    Article  CAS  Google Scholar 

  27. Imberti, L., Sottini, A., Bettinardi, A., Puoti, M., & Primi, D., Selective depletion in HIV infection of T cells that bear specific T cell receptor Vβ sequences. Science 254, 860–862 (1991).

    Article  CAS  Google Scholar 

  28. Laurence, J., Hodtsev, A.S. & Posnett, D.N. Superantigen implicated in dependence of HIV-1 replication in T cells on TCR Vβ expression. Nature 358, 255–259 (1992).

    Article  CAS  Google Scholar 

  29. Rebai, N. et al. Analysis of the T cell receptor β-chain variable-region (TCRBV) repertoire in monozygotic twins discordant for human immunodeficiency virus: Evidence for perturbations of specific Vβ segments in CD4+ T cells of the virus-positive twins. Proc. Natl. Acad. Sci. USA 91, 1529–1533 (1994).

    Article  CAS  Google Scholar 

  30. Westby, M., Manca, F. & Dalgleish, A.G. The role of host immune responses in determining the outcome of HIV infection. Immunol. Today 17, 120–126 (1996).

    Article  CAS  Google Scholar 

  31. Dalgleish, A.G. et al. T cell receptor variable gene products and early HIV-1 infection. Lancet 339, 824–828 (1992).

    Article  CAS  Google Scholar 

  32. Dobrescu, D. et al. Human immunodeficiency virus 1 reservoir in CD4+ T cells is restricted to certain Vb subsets. Proc. Natl. Acad. Sci. USA 92, 5563–5567 (1995).

    Article  CAS  Google Scholar 

  33. Dobrescu, D., Ursea, B., Pope, M., Asch, A.S. & Posnett, D.N. Enhanced HIV-1 replication in Vβ12 T cells due to human cytomegalovirus in monocytes: Evidence for a putative herpesvirus superantigen. Cell 82, 753–763 (1995).

    Article  CAS  Google Scholar 

  34. Soudeyns, H. et al. The T cell receptor Vβ repertoire in HIV-1 infection and disease. Semin. Immunol. 5, 175–185 (1993).

    Article  CAS  Google Scholar 

  35. Condra, J.H. et al. In vivo emergence of HIV-1 variants resistant to multiple protease inhibitors. Nature 374, 569–571 (1995).

    Article  CAS  Google Scholar 

  36. Centers for Disease Control and Prevention, 1994 revised guidelines for the performance of CD4+ T-cell determinations in persons with human immunodeficiency virus (HIV) infections. MMWR Morbid. Mortal. Wkly. Rep. 43, 1–21 (1994).

  37. Genevee, C. et al. An experimentally validated panel of subfamily-specific oligonucleotide primers (Vαl-w29/Vβ1-w24) for the study of human T cell receptor variable V gene segment usage by polymerase chain reaction. Eur. J. Immunol. 22, 1261–1269 (1992).

    Article  CAS  Google Scholar 

  38. Arden, B., Clark, S.P., Kabelitz, D. & Mak, T.W. T-cell receptor variable gene segment families. Immunogenetics 42, 455–500 (1995).

    CAS  PubMed  Google Scholar 

  39. Choi, Y. et al. Interaction of Staphylococcus aureus toxin “superantigens” with human T ceils. Proc. Natl. Acad. Sci. USA 86, 8941–8945 (1989).

    Article  CAS  Google Scholar 

  40. Arden, B., Clark, S.P., Kabelitz, D. & Mak, T.W. Human T-cell receptor variable gene segment families. Immunogenetics 42, 455–500 (1995).

    CAS  PubMed  Google Scholar 

  41. Pannetier, C. et al. The sizes of the CDR3 hypervariable regions of the murine T cell receptor β chains vary as a function of the recombined germ-line segments. Proc. Natl. Acad. Sci. USA 90, 4319–4323 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connors, M., Kovacs, J., Krevat, S. et al. HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies. Nat Med 3, 533–540 (1997). https://doi.org/10.1038/nm0597-533

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0597-533

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing