Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy

Anti-angiogenic therapy was proposed in 1971 as a means to treat solid tumors and in 1976 as a method of cancer prevention. Here we propose that this form of therapy, judiciously applied, can normalize the tumor vasculature and improve the delivery of therapeutics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of changes in tumor vasculature during the course of anti-angiogenic therapy.

References

  1. Jain, R.K. The next frontier of molecular medicine: delivery of therapeutics. Nature Med. 4, 655–657 (1998).

    Article  CAS  Google Scholar 

  2. Browder, T. et al. Anti-angiogenic scheduling of chemotherapy improves efficacy against experimental drug–resistant cancer. Cancer Res. 60, 1878–1886 (2000).

    CAS  PubMed  Google Scholar 

  3. Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest. 105, R15–24 (2000).

    Article  CAS  Google Scholar 

  4. Folkman, J. in Harrison's Textbook of Internal Medicine, 15th ed. (eds Braunwald, E. et al.) 517–530 (McGraw-Hill, New York, 2001).

    Google Scholar 

  5. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  Google Scholar 

  6. Teicher, B.A. A systems approach to cancer therapy. Cancer Metastasis Rev. 15, 247–272 (1996).

    Article  CAS  Google Scholar 

  7. Kozin, S.V. et al. VEGF receptor-2 blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res. 61, 39–44 (2001).

    CAS  PubMed  Google Scholar 

  8. Jain, R.K. Barriers to drug delivery in solid tumors. Sci. Am. 271, 58–65 (1994).

    Article  CAS  Google Scholar 

  9. Baish, J. et al. Fractals and cancer. Cancer Res. 60, 3683–3688 (2000).

    CAS  PubMed  Google Scholar 

  10. Tsuzuki, Y. et al. VEGF modulation by targeting HIF-1α→HRE→VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Research 60, 6248–6252 (2000).

    CAS  PubMed  Google Scholar 

  11. Yuan F., et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-VEGF/VPF antibody. Proc. Natl. Acad. Sci. USA 93, 14765–14770 (1996).

    Article  CAS  Google Scholar 

  12. Kadambi, A. et al. Vascular endothelial growth factor (VEGF)–C differentially affects tumor vascular function and leukocyte recruitment. Cancer Res. 61, 2404–2408 (2001).

    CAS  PubMed  Google Scholar 

  13. Lee, C.G. et al. Anti-VEGF treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 60, 5565–5570 (2000).

    CAS  PubMed  Google Scholar 

  14. Hansen-Algenstaedt, N. et al. Tumor oxygenation during VEGFR-2 blockade, hormone ablation, and chemotherapy. Cancer Res. 60, 4556–4560 (2000).

    CAS  PubMed  Google Scholar 

  15. Jain, R.K. et al. Endothelial cell death, angiogenesis, and microvascular function following castration in an androgen-dependent tumor: Role of VEGF. Proc. Natl. Acad. Sci. USA 95, 10820–10825 (1998).

    Article  CAS  Google Scholar 

  16. Uehara, H., Kim, S.J., Karashima, T., Zheng, L. & Fidler, I.J. Blockade of PDGF-R signaling by STI571 inhibits angiogenesis and growth of human prostate cancer cells in the bone of nude mice. Abstract 2192. American Association for Cancer Research 92nd Annual Meeting, New Orleans (April 2001).

  17. Viloria-Petit, A. et al. Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res. 61, 5090–5101 (2001).

    CAS  PubMed  Google Scholar 

  18. Benjamin, L.E., Golijanin, D., Itin, A., Pode, D. & Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103, 159–165 (1999).

    Article  CAS  Google Scholar 

  19. Fidler, I.J. Angiogenic heterogeneity: regulation of neoplastic angiogenesis by the organ microenvironment. J. Natl. Cancer Inst. 93, 1040–1041 (2001).

    Article  CAS  Google Scholar 

  20. Ruoslahti, E. Targeting tumor vasculature with homing peptides from phage display. Semin. Cancer Biol. 10, 435–442 (2000).

    Article  CAS  Google Scholar 

  21. Thorpe, P.E. & Ran, S. Tumor infarction by targeting tissue factor to tumor vasculature. Cancer J. Sci. Am. 6 Suppl 3, S237–244 (2000).

    Google Scholar 

  22. Gasparini, G. et al. Vascular integrin α(v)β3: a new prognostic indicator in breast cancer. Clin. Cancer Res. 4, 2625–2634 (1998).

    CAS  PubMed  Google Scholar 

  23. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Article  CAS  Google Scholar 

  24. Griffon-Etienne, G. et al. Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 59, 3776–3782 (1999).

    CAS  PubMed  Google Scholar 

  25. Murata, R., Nishimura, Y. & Hiraoka, M. An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 37, 1107–1113 (1997).

    Article  CAS  Google Scholar 

  26. Ma, J. et al. Pharmacodynamic-mediated reduction of Temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470. Cancer Res. 61, 5491–5498 (2001).

    CAS  PubMed  Google Scholar 

  27. Gullino, P.M. Angiogenesis and oncogenesis. J. Natl. Cancer Inst. 61, 639–643 (1978).

    CAS  PubMed  Google Scholar 

  28. Milosevic, M. et al. Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res. 61, 6400–6405 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Steele Laboratory, especially B. Fenton, E. diTomaso and L. Munn, as well as I.J. Fidler, J. Folkman, R. Kerbel, J. Loeffler, J. Samson, B. Seed, H. Suit, J. Tatum and B. Teicher for helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, R. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat Med 7, 987–989 (2001). https://doi.org/10.1038/nm0901-987

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0901-987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing