Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effective gene therapy with nonintegrating lentiviral vectors

Abstract

Retroviral and lentiviral vector integration into host-cell chromosomes carries with it a finite chance of causing insertional mutagenesis1. This risk has been highlighted by the induction of malignancy in mouse models, and development of lymphoproliferative disease in three individuals with severe combined immunodeficiency–X1 (refs. 2,3). Therefore, a key challenge for clinical therapies based on retroviral vectors is to achieve stable transgene expression while minimizing insertional mutagenesis. Recent in vitro studies have shown that integration-deficient lentiviral vectors can mediate stable transduction4,5,6. With similar vectors, we now show efficient and sustained transgene expression in vivo in rodent ocular and brain tissues. We also show substantial rescue of clinically relevant rodent models of retinal degeneration. Therefore, the high efficiency of gene transfer and expression mediated by lentiviruses can be harnessed in vivo without a requirement for vector integration. For therapeutic application to postmitotic tissues, this system substantially reduces the risk of insertional mutagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efficient in vivo expression of eGFP from integration-deficient vectors in mouse ocular tissues.
Figure 2: Efficient expression of eGFP from integration-deficient vectors in mouse brain.
Figure 3: Rescue of ocular function in Rpe65rd12/rd12 mice.
Figure 4: Analyses of HIV vector integration in vivo.

Similar content being viewed by others

References

  1. Baum, C. et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101, 2099–2114 (2003).

    Article  CAS  Google Scholar 

  2. Li, Z. et al. Murine leukemia induced by retroviral gene marking. Science 296, 497 (2002).

    Article  CAS  Google Scholar 

  3. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  Google Scholar 

  4. Saenz, D.T. et al. Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J. Virol. 78, 2906–2920 (2004).

    Article  CAS  Google Scholar 

  5. Vargas, J., Jr ., Gusella, G.L., Najfeld, V., Klotman, M.E. & Cara, A. Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum. Gene Ther. 15, 361–372 (2004).

    Article  CAS  Google Scholar 

  6. Lu, R. et al. Simian virus 40-based replication of catalytically inactive human immunodeficiency virus type 1 integrase mutants in nonpermissive T cells and monocyte-derived macrophages. J. Virol. 78, 658–668 (2004).

    Article  CAS  Google Scholar 

  7. Engelman, A. In vivo analysis of retroviral integrase structure and function. Adv. Virus Res. 52, 411–426 (1999).

    Article  CAS  Google Scholar 

  8. Shank, P.R. et al. Mapping unintegrated avian sarcoma virus DNA: termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA. Cell 15, 1383–1395 (1978).

    Article  CAS  Google Scholar 

  9. Hsu, T.W., Sabran, J.L., Mark, G.E., Guntaka, R.V. & Taylor, J.M. Analysis of unintegrated avian RNA tumor virus double-stranded DNA intermediates. J. Virol. 28, 810–818 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pierson, T.C. et al. Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication. J. Virol. 76, 4138–4144 (2002).

    Article  CAS  Google Scholar 

  11. Butler, S.L., Johnson, E.P. & Bushman, F.D. Human immunodeficiency virus cDNA metabolism: notable stability of two-long terminal repeat circles. J. Virol. 76, 3739–3747 (2002).

    Article  CAS  Google Scholar 

  12. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

  13. Case, S.S. et al. Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc. Natl. Acad. Sci. USA 96, 2988–2993 (1999).

    Article  CAS  Google Scholar 

  14. Naldini, L., Blomer, U., Gage, F.H., Trono, D. & Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11382–11388 (1996).

    Article  CAS  Google Scholar 

  15. Loewen, N. et al. Comparison of wild-type and class I integrase mutant-FIV vectors in retina demonstrates sustained expression of integrated transgenes in retinal pigment epithelium. J. Gene Med. 5, 1009–1017 (2003).

    Article  CAS  Google Scholar 

  16. Park, F., Ohashi, K. & Kay, M.A. Therapeutic levels of human factor VIII and IX using HIV-1-based lentiviral vectors in mouse liver. Blood 96, 1173–1176 (2000).

    CAS  PubMed  Google Scholar 

  17. Leavitt, A.D., Robles, G., Alesandro, N. & Varmus, H.E. Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J. Virol. 70, 721–728 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bainbridge, J.W. et al. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector; efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther. 8, 1665–1668 (2001).

    Article  CAS  Google Scholar 

  20. Bemelmans, A.P. et al. Retinal cell type expression specificity of HIV-1-derived gene transfer vectors upon subretinal injection in the adult rat: influence of pseudotyping and promoter. J. Gene Med. 7, 1367–1374 (2005).

    Article  CAS  Google Scholar 

  21. Gruter, O. et al. Lentiviral vector-mediated gene transfer in adult mouse photoreceptors is impaired by the presence of a physical barrier. Gene Ther. 12, 942–947 (2005).

    Article  CAS  Google Scholar 

  22. Pang, J.J. et al. Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Mol. Vis. 11, 152–162 (2005).

    CAS  PubMed  Google Scholar 

  23. Dejneka, N.S. et al. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol. Ther. 9, 182–188 (2004).

    Article  CAS  Google Scholar 

  24. Smith, A.J. et al. AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol. Ther. 8, 188–195 (2003).

    Article  CAS  Google Scholar 

  25. Schmidt, M. et al. Polyclonal long-term repopulating stem cell clones in a primate model. Blood 100, 2737–2743 (2002).

    Article  CAS  Google Scholar 

  26. Abordo-Adesida, E. et al. Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum. Gene Ther. 16, 741–751 (2005).

    Article  CAS  Google Scholar 

  27. Demaison, C. et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human imunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum. Gene Ther. 13, 803–813 (2002).

    Article  CAS  Google Scholar 

  28. Tschernutter, M. et al. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Ther. 12, 694–701 (2005).

    Article  CAS  Google Scholar 

  29. Butler, S.L., Hansen, M.S. & Bushman, F.D. A quantitative assay for HIV DNA integration in vivo. Nat. Med. 7, 631–634 (2001).

    Article  CAS  Google Scholar 

  30. Ali, R.R. et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat. Genet. 25, 306–310 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Naldini for lentiviral plasmids, M. Balda for ARPE-19 cells, S. Wilkie for human RPE65 cDNA, D. Thompson for RPE65-specific antibody and D. King for human actin plasmid. This work was supported by the Wellcome Trust (A.J.T. and R.J.Y.-M.), the Sir Jules Thorn Charitable Trust (A.J.T. and R.R.A.), the Special Trustees of Moorfields Eye Hospital (R.R.A.) and the European Union Integrated Project CONSERT (Concerted Safety and Efficiency of Retroviral Transgenesis in Gene Therapy of Inherited Diseases) 005242 (C.v.K., A.J.T. and S.J.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafael J Yáñez-Muñoz or Robin R Ali.

Ethics declarations

Competing interests

We are applying for a patent based on the results described in the manuscript.

Supplementary information

Supplementary Fig. 1

Integration-deficient lentiviral vectors mediate transient transduction in cultured proliferating cells. (PDF 204 kb)

Supplementary Fig. 2

hrGFP expression from integration-deficient vectors in rat RPE. (PDF 189 kb)

Supplementary Fig. 3

Transduction of human RPE with integration-deficient vectors. (PDF 325 kb)

Supplementary Fig. 4

Rescue of ocular function in RCS rats. (PDF 154 kb)

Supplementary Table 1

Characterization of paired integration-deficient and integration-proficient HIV-1 vector stocks. (PDF 24 kb)

Supplementary Table 2

Summary of integration events detected by LAM-PCR in eyecups injected subretinally with HIV vectors. (PDF 24 kb)

Supplementary Table 3

Summary of ocular injections for GFP imaging studies in rodents. (PDF 24 kb)

Supplementary Methods (PDF 51 kb)

Supplementary Note (PDF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yáñez-Muñoz, R., Balaggan, K., MacNeil, A. et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12, 348–353 (2006). https://doi.org/10.1038/nm1365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing